Vikram Sharma Mailthody, James Wei, Nicholas Chen, Mohammad Behnia, Ruihao Yao, Qihao Wang, Vedant Agarwal, Churan He, Lijian Wang, Leihao Chen, Amit Agarwal, Edward Richter, Wen-mei Hwu, and Christopher Fletcher (University of Illinois at Urbana-Champaign); Jinjun Xiong (IBM); Andrew Miller and Sanjay Patel (University of Illinois at Urbana-Champaign)

COVID-19 has fundamentally disrupted the way we live. Government bodies, universities, and companies worldwide are rapidly developing technologies to combat the COVID-19 pandemic and safely reopen society. Essential analytics tools such as contact tracing, super-spreader event detection, and exposure mapping require collecting and analyzing sensitive user information. The increasing use of such powerful data-driven applications necessitates a secure, privacy-preserving infrastructure for computation on personal data.

In this paper, we analyze two such computing infrastructures under development at the University of Illinois at Urbana-Champaign to track and mitigate the spread of COVID-19. First, we present Safer Illinois, a system for decentralized health analytics supporting two applications currently deployed with widespread adoption: digital contact tracing and COVID-19 status cards. Second, we introduce the RokWall architecture for privacy-preserving centralized data analytics on sensitive user data. We discuss the architecture of these systems, design choices, threat models considered, and the challenges we experienced in developing production-ready systems for sensitive data analysis.

View More Papers

Flexsealing BGP Against Route Leaks: Peerlock Active Measurement and...

Tyler McDaniel (University of Tennessee, Knoxville), Jared M. Smith (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

Read More

GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural...

Qiao Zhang (Old Dominion University), Chunsheng Xin (Old Dominion University), Hongyi Wu (Old Dominion University)

Read More

HERA: Hotpatching of Embedded Real-time Applications

Christian Niesler (University of Duisburg-Essen), Sebastian Surminski (University of Duisburg-Essen), Lucas Davi (University of Duisburg-Essen)

Read More

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More