Jan Friebertshauser, Florian Kosterhon, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstad)

Embedded systems, IoT devices, and systems on a chip such as wireless network cards often run raw firmware binaries. Raw binaries miss metadata such as the target architecture and an entry point. Thus, their analysis is challenging. Nonetheless, chip firmware analysis is vital to the security of modern devices. We find that state-of-the-art disassemblers fail to identify function starts and signatures in raw binaries. In our case, these issues originate from the dense, variable-length ARM Thumb2 instruction set. Binary differs such as BinDiff and Diaphora perform poor on raw ARM binaries, since they depend on correctly identified functions. Moreover, binary patchers like NexMon require function signatures to pass arguments. As a solution for fast diffing and function identification, we design and implement Polypyus. This firmware historian learns from binaries with known functions, generalizes this knowledge, and applies it to raw binaries. Polypyus is independent from architecture and disassembler. However, the results can be imported as disassembler entry points, thereby improving function identification and follow-up results by other binary differs. Additionally, we partially reconstruct function signatures and custom types from Eclipse PDOM files. Each Eclipse project contains a PDOM file, which caches selected project information for compiler optimization. We showcase the capabilities of Polypyus on a set of 20 firmware binaries.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 37 [1] => 47 ) ) ) [post__not_in] => Array ( [0] => 7329 ) )

Location Data and COVID-19 Contact Tracing: How Data Privacy...

Callie Monroe, Faiza Tazi, Sanchari Das (university of Denver)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Tales of Favicons and Caches: Persistent Tracking in Modern...

Konstantinos Solomos (University of Illinois at Chicago), John Kristoff (University of Illinois at Chicago), Chris Kanich (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

SOK: An Evaluation of Quantum Authentication Through Systematic Literature...

Ritajit Majumdar (Indian Statistical Institute), Sanchari Das (University of Denver)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)