Uwe Muller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstadt)

Even though PowerPC mostly disappeared from the consumer device market, its architectural properties continue being popular for highly specialized systems. This particularly includes embedded systems with real-time requirements that are deeply integrated into critical infrastructures as well as aeronautics, transportation, control systems in power plants, etc. One example is Terrestrial Trunked Radio (TETRA), a digital radio system used in the public safety domain and deployed in more than 120 countries worldwide: base stations of at least one of the main vendors are based on PowerPC. Despite the criticality of the aforementioned systems, many follow a security by obscurity approach and there are no openly available analysis tools. While analyzing a TETRA base station, we design and develop a set of analysis tools centered around a PowerPC binary patcher. We further create various dynamic tooling on top, including a fast memory dumper, function tracer, flexible patching capabilities at runtime, and a fuzzer. We describe the genesis of these tools and detail the binary patcher, which is general in nature and not limited to our base station under test.

View More Papers

Location Data and COVID-19 Contact Tracing: How Data Privacy...

Callie Monroe, Faiza Tazi, Sanchari Das (university of Denver)

Read More

Efficient Normalized Reduction and Generation of Equivalent Multivariate Binary...

Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Read More

Mondrian: Comprehensive Inter-domain Network Zoning Architecture

Jonghoon Kwon (ETH Zürich), Claude Hähni (ETH Zürich), Patrick Bamert (Zürcher Kantonalbank), Adrian Perrig (ETH Zürich)

Read More

What Remains Uncaught?: Characterizing Sparsely Detected Malicious URLs on...

Sayak Saha Roy, Unique Karanjit, Shirin Nilizadeh (The University of Texas at Arlington)

Read More