Dominik Maier, Lukas Seidel (TU Berlin)

Researchers spend hours, or even days, to understand a target well enough to harness it and get a feedback-guided fuzzer running. Once this is achieved, they rely on their fuzzer to find the right paths, maybe sampling the collected queue entries to see how well it performs. Their knowledge is of little help to the fuzzer, while the fuzzer’s behavior is largely a black box to the researcher. Enter JMPscare, providing deep insight into fuzzing queues. By highlighting unreached basic blocks across all queue items during fuzzing, JMPscare allows security researchers to understand the shortcomings of their fuzzer and helps to overcome them. JMPscare can analyze thousands of queue entries efficiently and highlight interesting roadblocks, socalled frontiers. This intel helps the human-in-the-loop to improve the fuzzer, mutator, and harness. Even complex bugs, hard to reach for a generalized fuzzer, hidden deep in the control flow of the target, can be covered in this way. Apart from a purely analytical view, its convenient built-in binary patching facilitates forced execution for subsequent fuzz runs. We demonstrate the benefit of JMPscare on the ARM-based MediaTek Baseband. With JMPscare we gain an in-depth understanding of larger parts of the firmware and find new targets in this RTOS. JMPscare simplifies further mutator, fuzzer, and instrumentation development.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 37 [1] => 47 ) ) ) [post__not_in] => Array ( [0] => 7325 ) )

Доверя́й, но проверя́й: SFI safety for native-compiled Wasm

Evan Johnson (University of California San Diego), David Thien (University of California San Diego), Yousef Alhessi (University of California San Diego), Shravan Narayan (University Of California San Diego), Fraser Brown (Stanford University), Sorin Lerner (University of California San Diego), Tyler McMullen (Fastly Labs), Stefan Savage (University of California San Diego), Deian Stefan (University of California…

Read More

Deceptive Deletions for Protecting Withdrawn Posts on Social Media...

Mohsen Minaei (Visa Research), S Chandra Mouli (Purdue University), Mainack Mondal (IIT Kharagpur), Bruno Ribeiro (Purdue University), Aniket Kate (Purdue University)

Read More

SOK: An Evaluation of Quantum Authentication Through Systematic Literature...

Ritajit Majumdar (Indian Statistical Institute), Sanchari Das (University of Denver)

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)