Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Binary reverse engineers combine automated and manual techniques to answer questions about software. However, when evaluating automated analysis results, they rarely have additional information to help them contextualize these results in the binary. We expect that humans could more readily understand the binary program and these analysis results if they had access to information usually kept internal to the analysis, like value-set analysis (VSA) information. However, these automated analyses often give up precision for scalability, and imprecise information might hinder human decision making.

To assess how precision of VSA information affects human analysts, we designed a human study in which reverse engineers answered short information flow problems, determining whether code snippets would print sensitive information. We hypothesized that precise VSA information would help our participants analyze code faster and more accurately, and that imprecise VSA information would lead to slower, less accurate performance than no VSA information. We presented hand-crafted code snippets with precise, imprecise, or no VSA information in a blocked design, recording participants’ eye movements, response times, and accuracy while they analyzed the snippets. Our data showed that precise VSA information changed participants’ problem-solving strategies and supported faster, more accurate analyses. However, surprisingly, imprecise VSA information also led to increased accuracy relative to no VSA information, likely due to the extra time participants spent working through the code.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 37 [1] => 47 ) ) ) [post__not_in] => Array ( [0] => 7324 ) )

Location Data and COVID-19 Contact Tracing: How Data Privacy...

Callie Monroe, Faiza Tazi, Sanchari Das (university of Denver)

Read More

PrivacyFlash Pro: Automating Privacy Policy Generation for Mobile Apps

Sebastian Zimmeck (Wesleyan University), Rafael Goldstein (Wesleyan University), David Baraka (Wesleyan University)

Read More

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

A First Look at Scams on YouTube

Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)