Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Mutation analysis is an effective technique to evaluate a test suite adequacy in terms of revealing unforeseen bugs in software. Traditional source- or IR-level mutation analysis is not applicable to the software only available in binary format. This paper proposes a practical binary mutation analysis via binary rewriting, along with a rich set of mutation operators to represent more realistic bugs. We implemented our approach using two state-of-the-art binary rewriting tools and evaluated its effectiveness and scalability by applying them to SPEC CPU benchmarks. Our analysis revealed that the richer mutation operators contribute to generating more diverse mutants, which, compared to previous works leads to a higher mutation score for the test harness. We also conclude that the reassembleable disassembly rewriting yields better scalability in comparison to lifting to an intermediate representation and performing a full translation.

View More Papers

Practical Non-Interactive Searchable Encryption with Forward and Backward Privacy

Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

Read More

Symbolic Path Tracing to Find Android Permission-Use Triggers

Kristopher Micinski (Haverford College), Thomas Gilray (University of Alabama, Birmingham), Daniel Votipka (University of Maryland), Michelle L. Mazurek (University of Maryland), Jeffrey S. Foster (Tufts University)

Read More

Enhancing Symbolic Execution by Machine Learning Based Solver Selection

Sheng-Han Wen (National Taiwan University), Wei-Loon Mow (National Taiwan University), Wei-Ning Chen (National Taiwan University), Chien-Yuan Wang (National Taiwan University), Hsu-Chun Hsiao (National Taiwan University)

Read More