Ali Sadeghi Jahromi, AbdelRahman Abdou (Carleton University)

The Internet’s Public Key Infrastructure (PKI) has been used to provide security to HTTPS and other protocols over the Internet. Such infrastructure began to be increasingly relied upon for DNS security. DNS-over-TLS (DoT) is one recent rising and prominent example, whereby DNS traffic between stub and recursive resolver gets transmitted over a TLS-secured session. The security research community has studied and improved security shortcomings in the web certificate ecosystem. DoT’s certificates, on the other hand, have not been investigated comprehensively. It is also unclear if DoT client-side tools (e.g., stub resolvers) enforce security properly as modern-day browsers and mail clients do for HTTPS and secure email. In this research, we compare the DoT and HTTPS certificate ecosystems. Preliminary results are so far promising, as they show that DoT appears to have benefited from the PKI security advancements that were mostly tailored to HTTPS.

View More Papers

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

As Strong As Its Weakest Link: How to Break...

Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More

The Abuser Inside Apps: Finding the Culprit Committing Mobile...

Joongyum Kim (KAIST), Jung-hwan Park (KAIST), Sooel Son (KAIST)

Read More