Liang Wang, Hyojoon Kim, Prateek Mittal, Jennifer Rexford (Princeton University)

In conventional DNS, or Do53, requests and responses are sent in cleartext. Thus, DNS recursive resolvers or any on-path adversaries can access privacy-sensitive information. To address this issue, several encryption-based approaches (e.g., DNS-over-HTTPS) and proxy-based approaches (e.g., Oblivious DNS) were proposed. However, encryption-based approaches put too much trust in recursive resolvers. Proxy-based approaches can help hide the client’s identity, but sets a higher deployment barrier while also introducing noticeable performance overhead. We propose PINOT, a packet-header obfuscation system that runs entirely in the data plane of a programmable network switch, which provides a lightweight, low-deployment-barrier anonymization service for clients sending and receiving DNS packets. PINOT does not require any modification to the DNS protocol or additional client software installation or proxy setup. Yet, it can also be combined with existing approaches to provide stronger privacy guarantees. We implement a PINOT prototype on a commodity switch, deploy it in a campus network, and present results on protecting user identity against public DNS services.

View More Papers

Your Phone is My Proxy: Detecting and Understanding Mobile...

Xianghang Mi (University at Buffalo), Siyuan Tang (Indiana University Bloomington), Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Feng Qian (University of Minnesota Twin Cities), XiaoFeng Wang (Indiana University Bloomington)

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

Detecting DolphinAttacks Based on Microphone Array

Guoming Zhang, Xiaoyu Ji (Zhejiang University)

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More