Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

In autonomous vehicle systems – whether ground or aerial – vehicles and infrastructure-level units communicate among each other continually to ensure safe and efficient autonomous operations. However, different attack scenarios might arise in such environments when a device in the network cannot physically pinpoint the actual transmitter of a certain message. For example, a compromised or a malicious vehicle could send a message with a fabricated location to appear as if it is in the location of another legitimate vehicle, or fabricate multiple messages with fake identities to alter the behavior of other vehicles/infrastructure units and cause traffic congestion or accidents. In this paper, we propose a Vision-Based Two-Factor Authentication and Localization Scheme for Autonomous Vehicles. The scheme leverages the vehicles’ light sources and cameras to establish an “Optical Camera Communication (OCC)” channel providing an auxiliary channel between vehicles to visually authenticate and localize the transmitter of messages that are sent over Radio Frequency (RF) channels. Additionally, we identify possible attacks against the proposed scheme as well as mitigation strategies.

View More Papers

On the Insecurity of SMS One-Time Password Messages against...

Zeyu Lei (Purdue University), Yuhong Nan (Purdue University), Yanick Fratantonio (Eurecom & Cisco Talos), Antonio Bianchi (Purdue University)

Read More

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More