Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Robust perception is crucial for autonomous vehicle security. In this work, we design a practical adversarial patch attack against camera-based obstacle detection. We identify that the back of a box truck is an effective attack vector. We also improve attack robustness by considering a variety of input frames associated with the attack scenario. This demo includes videos that show our attack can cause end-to-end consequences on a representative autonomous driving system in a simulator.

View More Papers

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

Processing Dangerous Paths – On Security and Privacy of...

Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

Read More

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

Digital Technologies in Pandemic: The Good, the Bad and...

Moderator: Ahmad-Reza Sadeghi, TU Darmstadt, Germany Panelists: Mario Guglielmetti, Legal Officer, European Data Protection Supervisor* Jaap-Henk Hoepman, Radbaud University, The Netherlands Alexandra Dmitrienko, University of Würzburg, Germany, Farinaz Koushanfar, UCSD, USA *attending in his personal capacity

Read More