Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Diagnostics and maintenance systems create frequent, legitimate, and intermittent connections to a vehicle’s communication network. These connections are typically made with a vehicle diagnostics adapter (VDA), which serves to translate vehicle network communications to a Windows based service computer running diagnostics software. With heavy vehicles, the diagnostic systems are written and maintained by the supplier of the electronic control units. This means there may be multiple different software packages needed to maintain a heavy vehicle. However, all of these software systems use an interface defined by the American Trucking Association (ATA) through their Technology and Maintenance Council (TMC) using Recommended Practice (RP) number 1210, the Windows API for vehicle diagnostics. Therefore, most diagnostics and maintenance communications on a heavy vehicles utilize a thirdparty VDA with little to no cybersecurity controls. The firmware and drivers for the VDA can be entry points for cyber attacks. In this demonstration, a vehicle diagnostics session is attacked using the VDA firmware, VDA PC driver, and a middle-person attack. A proposed secure diagnostics gateway is demonstrated to secure the diagnostics communications between the heavy vehicle network and the diagnostics application, thus defending against attacks on vulnerable VDA components. Furthermore, the maintenance operations are often trusted and an attacker gains physical access to the vehicle with the unknowing technician. Since these diagnostic systems are connected to the Internet and run Windows, the traditional security issues associated with Windows PCs are now part of the heavy vehicle.

View More Papers

Google/Apple Exposure Notification Due Diligence

Douglas Leith and Stephen Farrell (Trinity College Dublin)

Read More

Obfuscated Access and Search Patterns in Searchable Encryption

Zhiwei Shang (University of Waterloo), Simon Oya (University of Waterloo), Andreas Peter (University of Twente), Florian Kerschbaum (University of Waterloo)

Read More

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More