Li Yue, Zheming Li, Tingting Yin, and Chao Zhang (Tsinghua University)

Modern vehicles have many electronic control units (ECUs) connected to the Controller Area Network (CAN) bus, which have few security features in design and are vulnerable to cyber attacks. Researchers have proposed solutions like intrusion detection systems (IDS) to mitigate such threats. We presented a novel attack, CANCloak, which can deceive two ECUs with one CAN data frame, and therefore can bypass IDS detection or cause vehicle malfunction. In this attack, assuming a malicious transmitter is controlled by the adversary, one crafted CAN data frame can be transmitted to a target receiver, while other ECUs shall not receive that frame nor raise any error. We have setup a physical test environment and evaluated the effectiveness of this attack. Evaluation results showed that success rate of CANCloak reaches up to 99.7%, while the performance depends on the attack payload and sample point settings of victim receivers, independent from bus bit rate.

View More Papers

Vision-Based Two-Factor Authentication & Localization Scheme for Autonomous Vehicles

Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

Read More

V2X Security: Status and Open Challenges

Jonathan Petit (Director Of Engineering at Qualcomm Technologies) Dr. Jonathan Petit is Director of Engineering at Qualcomm Technologies, Inc., where he leads research in security of connected and automated vehicles (CAV). His team works on designing security solutions, but also develops tools for automotive penetration testing and builds prototypes. His recent work on misbehavior protection…

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

Demo #9: Attacking Multi-Sensor Fusion based Localization in High-Level...

Junjie Shen, Jun Yeon Won, Zeyuan Chen and Qi Alfred Chen (UC Irvine)

Read More