Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Endpoint monitoring solutions are widely deployed in today’s enterprise environments to support advanced attack detection and investigation. These monitors continuously record system-level activities as audit logs and provide deep visibility into security incidents. Unfortunately, to recognize behaviors of interest and detect potential threats, cyber analysts face a semantic gap between low-level audit events and high-level system behaviors. To bridge this gap, existing work largely matches streams of audit logs against a knowledge base of rules that describe behaviors. However, specifying such rules heavily relies on expert knowledge. In this paper, we present Watson, an automated approach to abstracting behaviors by inferring and aggregating the semantics of audit events. Watson uncovers the semantics of events through their usage context in audit logs. By extracting behaviors as connected system operations, Watson then combines event semantics as the representation of behaviors. To reduce analysis workload, Watson further clusters semantically similar behaviors and distinguishes the representatives for analyst investigation. In our evaluation against both benign and malicious behaviors, Watson exhibits high accuracy for behavior abstraction. Moreover, Watson can reduce analysis workload by two orders of magnitude for attack investigation.

View More Papers

Preventing and Detecting State Inference Attacks on Android

Andrea Possemato (IDEMIA and EURECOM), Dario Nisi (EURECOM), Yanick Fratantonio (EURECOM and Cisco Talos)

Read More

PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University), Dongyan Xu (Purdue University)

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More