Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Endpoint monitoring solutions are widely deployed in today’s enterprise environments to support advanced attack detection and investigation. These monitors continuously record system-level activities as audit logs and provide deep visibility into security incidents. Unfortunately, to recognize behaviors of interest and detect potential threats, cyber analysts face a semantic gap between low-level audit events and high-level system behaviors. To bridge this gap, existing work largely matches streams of audit logs against a knowledge base of rules that describe behaviors. However, specifying such rules heavily relies on expert knowledge. In this paper, we present Watson, an automated approach to abstracting behaviors by inferring and aggregating the semantics of audit events. Watson uncovers the semantics of events through their usage context in audit logs. By extracting behaviors as connected system operations, Watson then combines event semantics as the representation of behaviors. To reduce analysis workload, Watson further clusters semantically similar behaviors and distinguishes the representatives for analyst investigation. In our evaluation against both benign and malicious behaviors, Watson exhibits high accuracy for behavior abstraction. Moreover, Watson can reduce analysis workload by two orders of magnitude for attack investigation.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 47 ) ) ) [post__not_in] => Array ( [0] => 6961 ) )

Hashomer – Privacy-Preserving Bluetooth Based Contact Tracing Scheme for...

Benny Pinkas (Bar-Ilan University); Eyal Ronen (Tel Aviv University)

Read More

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Read More

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)