Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Network protocol reverse engineering is an important challenge with many security applications. A popular kind of method leverages network message traces. These methods rely on pair-wise sequence alignment and/or tokenization. They have various limitations such as difficulties of handling a large number of messages and dealing with inherent uncertainty. In this paper, we propose a novel probabilistic method for network trace based protocol reverse engineering. It first makes use of multiple sequence alignment to align all messages and then reduces the problem to identifying the keyword field from the set of aligned fields. The keyword field determines the type of a message. The identification is probabilistic, using random variables to indicate the likelihood of each field (being the true keyword). A joint distribution is constructed among the random variables and the observations of the messages. Probabilistic inference is then performed to determine the most likely keyword field, which allows messages to be properly clustered by their true types and enables the recovery of message format and state machine. Our evaluation on 10 protocols shows that our technique substantially outperforms the state-of-the-art and our case studies show the unique advantages of our technique in IoT protocol reverse engineering and malware analysis.

View More Papers

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

UIScope: Accurate, Instrumentation-free, and Visible Attack Investigation for GUI...

Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Read More

A Devil of a Time: How Vulnerable is NTP...

Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

Read More