Hai Huang (Tsinghua University), Jiaming Mu (Tsinghua University), Neil Zhenqiang Gong (Duke University), Qi Li (Tsinghua University), Bin Liu (West Virginia University), Mingwei Xu (Tsinghua University)

Recommender systems play a crucial role in helping users to find their interested information in various web services such as Amazon, YouTube, and Google News. Various recommender systems, ranging from neighborhood-based, association-rule-based, matrix-factorization-based, to deep learning based, have been developed and deployed in industry. Among them, deep learning based recommender systems become increasingly popular due to their superior performance.

In this work, we conduct the first systematic study on data poisoning attacks to deep learning based recommender systems. An attacker's goal is to manipulate a recommender system such that the attacker-chosen target items are recommended to many users. To achieve this goal, our attack injects fake users with carefully crafted ratings to a recommender system. Specifically, we formulate our attack as an optimization problem, such that the injected ratings would maximize the number of normal users to whom the target items are recommended. However, it is challenging to solve the optimization problem because it is a non-convex integer programming problem. To address the challenge, we develop multiple techniques to approximately solve the optimization problem. Our experimental results on three real-world datasets, including small and large datasets, show that our attack is effective and outperforms existing attacks. Moreover, we attempt to detect fake users via statistical analysis of the rating patterns of normal and fake users. Our results show that our attack is still effective and outperforms existing attacks even if such a detector is deployed.

View More Papers

On Building the Data-Oblivious Virtual Environment

Tushar Jois (Johns Hopkins University), Hyun Bin Lee, Christopher Fletcher, Carl A. Gunter (University of Illinois at Urbana-Champaign)

Read More

Cross-National Study on Phishing Resilience

Shakthidhar Reddy Gopavaram (Indiana University), Jayati Dev (Indiana University), Marthie Grobler (CSIRO’s Data61), DongInn Kim (Indiana University), Sanchari Das (University of Denver), L. Jean Camp (Indiana University)

Read More

Tales of Favicons and Caches: Persistent Tracking in Modern...

Konstantinos Solomos (University of Illinois at Chicago), John Kristoff (University of Illinois at Chicago), Chris Kanich (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Panel – Experiment Artifact Sharing: Challenges and Solutions

Moderator: Laura Tinnel (SRI International) Panelists: Clémentine Maurice (CNRS, IRIS); Martin Rosso (Eindhoven University of Technology); Eric Eide (U. Utah)

Read More