Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Coverage metrics play an essential role in greybox fuzzing. Recent work has shown that fine-grained coverage metrics could allow a fuzzer to detect bugs that cannot be covered by traditional edge coverage. However, fine-grained coverage metrics will also select more seeds, which cannot be efficiently scheduled by existing algorithms. This work addresses this problem by introducing a new concept of multi-level coverage metric and the corresponding reinforcement-learning-based hierarchical scheduler. Evaluation of our prototype on DARPA CGC showed that our approach outperforms AFL and AFLFast significantly: it can detect 20% more bugs, achieve higher coverage on 83 out of 180 challenges, and achieve the same coverage on 60 challenges. More importantly, it can detect the same number of bugs and achieve the same coverage faster. On FuzzBench, our approach achieves higher coverage than AFL++ (Qemu) on 10 out of 20 projects.

View More Papers

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga, Orestis Floros, Benoit Baudry, Martin Monperrus (KTH Royal Institute of Technology), Oscar Vera Perez (Univ Rennes, Inria, CNRS, IRISA)

Read More

Flexsealing BGP Against Route Leaks: Peerlock Active Measurement and...

Tyler McDaniel (University of Tennessee, Knoxville), Jared M. Smith (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

Read More

ALchemist: Fusing Application and Audit Logs for Precise Attack...

Le Yu (Purdue University), Shiqing Ma (Rutgers University), Zhuo Zhang (Purdue University), Guanhong Tao (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University), Vincent E. Urias (Sandia National Laboratories), Han Wei Lin (Sandia National Laboratories), Gabriela Ciocarlie (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International)

Read More

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More