Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

The amount of time in which a sample is executed is one of the key parameters of a malware analysis sandbox. Setting the threshold too high hinders the scalability and reduces the number of samples that can be analyzed in a day; too low and the samples may not have the time to show their malicious behavior, thus reducing the amount and quality of the collected data. Therefore, an analyst needs to find the ‘sweet spot’ that allows to collect only the minimum amount of information required to properly classify each sample. Anything more is wasting resources, anything less is jeopardizing the experiments.

Despite its importance, there are no clear guidelines on how to choose this parameter, nor experiments that can help companies to assess the pros and cons of a choice over another. To fill this gap, in this paper we provide the first large-scale study of the impact that the execution time has on both the amount and the quality of the collected events. We measure the evolution of system calls and code coverage, to draw a precise picture of the fraction of runtime behavior we can expect to observe in a sandbox. Finally, we implemented a machine learning based malware detection method, and applied it to the data collected in different time windows, to also report on the relevance of the events observed at different points in time.

Our results show that most samples run for either less than two minutes or for more than ten. However, most of the behavior (and 98% of the executed basic blocks) are observed during the first two minutes of execution, which is also the time windows that result in a higher accuracy of our ML classifier. We believe this information can help future researchers and industrial sandboxes to better tune their analysis systems.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 47 ) ) ) [post__not_in] => Array ( [0] => 6955 ) )

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More

Digital Technologies in Pandemic: The Good, the Bad and...

Moderator: Ahmad-Reza Sadeghi, TU Darmstadt, Germany Panelists: Mario Guglielmetti, Legal Officer, European Data Protection Supervisor* Jaap-Henk Hoepman, Radbaud University, The Netherlands Alexandra Dmitrienko, University of Würzburg, Germany, Farinaz Koushanfar, UCSD, USA *attending in his personal capacity

Read More

Practical Non-Interactive Searchable Encryption with Forward and Backward Privacy

Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

Read More

A Formal Analysis of the FIDO UAF Protocol

Haonan Feng (Beijing University of Posts and Telecommunications), Hui Li (Beijing University of Posts and Telecommunications), Xuesong Pan (Beijing University of Posts and Telecommunications), Ziming Zhao (University at Buffalo)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)