Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Emerging WebAssembly(Wasm)-based cryptojacking malware covertly uses the computational resources of users without their consent or knowledge. Indeed, most victims of this malware are unaware of such unauthorized use of their computing power due to techniques employed by cryptojacking malware authors such as CPU throttling and obfuscation. A number of dynamic analysis-based detection mechanisms exist that aim to circumvent such techniques. However, since these mechanisms use dynamic features, the collection of such features, as well as the actual detection of the malware, require that the cryptojacking malware run for a certain amount of time, effectively mining for that period, and therefore causing significant overhead. To solve these limitations, in this paper, we propose MINOS, a novel, extremely lightweight cryptojacking detection system that uses deep learning techniques to accurately detect the presence of unwarranted Wasm-based mining activity in real-time. MINOS uses an image-based classification technique to distinguish between benign webpages and those using Wasm to implement unauthorized mining. Specifically, the classifier implements a convolutional neural network (CNN) model trained with a comprehensive dataset of current malicious and benign Wasm binaries. MINOS achieves exceptional accuracy with a low TNR and FPR. Moreover, our extensive performance analysis of MINOS shows that the proposed detection technique can detect mining activity instantaneously from the most current in-the-wild cryptojacking malware with an accuracy of 98.97%, in an average of 25.9 milliseconds while using a maximum of 4% of the CPU and 6.5% of RAM, proving that MINOS is highly effective while lightweight, fast, and computationally inexpensive.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 47 ) ) ) [post__not_in] => Array ( [0] => 6950 ) )

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Read More

Tales of Favicons and Caches: Persistent Tracking in Modern...

Konstantinos Solomos (University of Illinois at Chicago), John Kristoff (University of Illinois at Chicago), Chris Kanich (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

DNS Privacy Vs : Confronting protocol design trade offs...

Mallory Knodel (Center for Democracy and Technology), Shivan Sahib (Salesforce)

Read More

From WHOIS to WHOWAS: A Large-Scale Measurement Study of...

Chaoyi Lu (Tsinghua University; Beijing National Research Center for Information Science and Technology), Baojun Liu (Tsinghua University; Beijing National Research Center for Information Science and Technology; Qi An Xin Group), Yiming Zhang (Tsinghua University; Beijing National Research Center for Information Science and Technology), Zhou Li (University of California, Irvine), Fenglu Zhang (Tsinghua University), Haixin Duan…

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)