Sun Hyoung Kim (Penn State), Cong Sun (Xidian University), Dongrui Zeng (Penn State), Gang Tan (Penn State)

Enforcing fine-grained Control-Flow Integrity (CFI) is critical for increasing software security. However, for commercial off-the-shelf (COTS) binaries, constructing high-precision Control-Flow Graphs (CFGs) is challenging, because there is no source-level information, such as symbols and types, to assist in indirect-branch target inference. The lack of source-level information brings extra challenges to inferring targets for indirect calls compared to other kinds of indirect branches. Points-to analysis could be a promising solution for this problem, but there is no practical points-to analysis framework for inferring indirect call targets at the binary level. Value set analysis (VSA) is the state-of-the-art binary-level points-to analysis but does not scale to large programs. It is also highly conservative by design and thus leads to low-precision CFG construction. In this paper, we present a binary-level points-to analysis framework called BPA to construct sound and high-precision CFGs. It is a new way of performing points-to analysis at the binary level with the focus on resolving indirect call targets. BPA employs several major techniques, including assuming a block memory model and a memory access analysis for partitioning memory into blocks, to achieve a better balance between scalability and precision. In evaluation, we demonstrate that BPA achieves a 34.5% precision improvement rate over the current state-of-the-art technique without introducing false negatives.

View More Papers

Measuring DoT/DoH Blocking Using OONI Probe: a Preliminary Study

S. Basso (Open Observatory of Network Interference)

Read More

What Remains Uncaught?: Characterizing Sparsely Detected Malicious URLs on...

Sayak Saha Roy, Unique Karanjit, Shirin Nilizadeh (The University of Texas at Arlington)

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More

As Strong As Its Weakest Link: How to Break...

Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Read More