Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

We present the design and implementation of a tool called TASE that uses transactional memory to reduce the latency of symbolic-execution applications with small amounts of symbolic state.
Execution paths are executed natively while operating on concrete values, and only when execution encounters symbolic values (or modeled functions) is native execution suspended and interpretation begun. Execution then returns to its native mode when symbolic values are no longer encountered. The key innovations in the design of TASE are a technique for amortizing the cost of checking whether values are symbolic over few instructions, and the use of hardware-supported transactional memory (TSX) to implement native execution that rolls back with no effect when use of a symbolic value is detected (perhaps belatedly). We show that TASE has the potential to dramatically improve some latency-sensitive applications of symbolic execution, such as methods to verify the behavior of a client in a client-server application.

View More Papers

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully...

Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti (University of Salerno)

Read More

Denial-of-Service Attacks on C-V2X Networks

Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Read More