Charlie Hou (CMU, IC3), Mingxun Zhou (Peking University), Yan Ji (Cornell Tech, IC3), Phil Daian (Cornell Tech, IC3), Florian Tramèr (Stanford University), Giulia Fanti (CMU, IC3), Ari Juels (Cornell Tech, IC3)

Incentive mechanisms are central to the functionality of permissionless blockchains: they incentivize participants to run and secure the underlying consensus protocol. Designing incentive-compatible incentive mechanisms is notoriously challenging, however. As a result, most public blockchains today use incentive mechanisms whose security properties are poorly understood and largely untested. In this work, we propose SquirRL, a framework for using deep reinforcement learning to analyze attacks on blockchain incentive mechanisms. We demonstrate SquirRL’s power by first recovering known attacks: (1) the optimal selfish mining attack in Bitcoin [52], and (2) the Nash equilibrium in block withholding attacks [16]. We also use SquirRL to obtain several novel empirical results. First, we discover a counterintuitive flaw in the widely used rushing adversary model when applied to multi-agent Markov games with incomplete information. Second, we demonstrate that the optimal selfish mining strategy identified in [52] is actually not a Nash equilibrium in the multi-agent selfish mining setting. In fact, our results suggest (but do not prove) that when more than two competing agents engage in selfish mining, there is no profitable Nash equilibrium. This is consistent with the lack of observed selfish mining in the wild. Third, we find a novel attack on a simplified version of Ethereum’s finalization mechanism, Casper the Friendly Finality Gadget (FFG) that allows a strategic agent to amplify her rewards by up to 30%. Notably, [10] shows that honest voting is a Nash equilibrium in Casper FFG; our attack shows that when Casper FFG is composed with selfish mining, this is no longer the case. Altogether, our experiments demonstrate SquirRL’s flexibility and promise as a framework for studying attack settings that have thus far eluded theoretical and empirical understanding.

View More Papers

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More

Доверя́й, но проверя́й: SFI safety for native-compiled Wasm

Evan Johnson (University of California San Diego), David Thien (University of California San Diego), Yousef Alhessi (University of California San Diego), Shravan Narayan (University Of California San Diego), Fraser Brown (Stanford University), Sorin Lerner (University of California San Diego), Tyler McMullen (Fastly Labs), Stefan Savage (University of California San Diego), Deian Stefan (University of California…

Read More

WINNIE : Fuzzing Windows Applications with Harness Synthesis and...

Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More