Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

In Dynamic Symmetric Searchable Encryption (DSSE), forward privacy ensures that previous search queries cannot be associated with future updates, while backward privacy guarantees that subsequent search queries cannot be associated with deleted documents in the past. In this work, we propose a generic forward and backward-private DSSE scheme, which is, to the best of our knowledge, the first practical and non-interactive Type-II backward-private DSSE scheme not relying on trusted execution environments. To this end, we first introduce a new cryptographic primitive, named Symmetric Revocable Encryption (SRE), and propose a modular construction from some succinct cryptographic primitives. Then we present our DSSE scheme based on the proposed SRE, and instantiate it with lightweight symmetric primitives. At last, we implement our scheme and
compare it with the most efficient Type-II backward-private scheme to date (Demertzis et al., NDSS 2020). In a typical network environment, our result shows that the search in our scheme outperforms it by 2-11x under the same security notion.

View More Papers

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More

Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing

Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Read More

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga, Orestis Floros, Benoit Baudry, Martin Monperrus (KTH Royal Institute of Technology), Oscar Vera Perez (Univ Rennes, Inria, CNRS, IRISA)

Read More

Ovid: Message-based Automatic Contact Tracing

Leonie Reichert and Samuel Brack (Humboldt University of Berlin); Björn Scheuermann (Humboldt-University of Berlin)

Read More