Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Simon Rohlmann (Ruhr University Bochum)

Digitally signed PDFs are used in contracts and invoices to guarantee the authenticity and integrity of their content. A user opening a signed PDF expects to see a warning in case of *any* modification. In 2019, Mladenov et al. revealed various parsing vulnerabilities in PDF viewer implementations. They showed attacks that could modify PDF documents without invalidating the signature. As a consequence, affected vendors of PDF viewers implemented countermeasures preventing *all* attacks.

This paper introduces a novel class of attacks, which we call *shadow* attacks. The *shadow* attacks circumvent all existing countermeasures and break the integrity protection of digitally signed PDFs. Compared to previous attacks, the *shadow* attacks do not abuse implementation issues in a PDF viewer. In contrast, *shadow* attacks use the enormous flexibility provided by the PDF specification so that *shadow* documents remain standard-compliant. Since *shadow* attacks abuse only legitimate features, they are hard to mitigate.

Our results reveal that 16 (including Adobe Acrobat and Foxit Reader) of the 29 PDF viewers tested were vulnerable to *shadow* attacks. We introduce our tool *PDF-Attacker* which can automatically generate *shadow* attacks. In addition, we implemented *PDF-Detector* to prevent *shadow* documents from being signed or forensically detect exploits after being applied to signed PDFs.

View More Papers

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More