James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Satellite broadband services are critical infrastructures, bringing connectivity to the most remote regions of the globe. However, due to performance concerns, many geostationary satellite broadband services are unencrypted by default and vulnerable to long-range eavesdropping attacks. The result is that deeply sensitive internet traffic is regularly broadcast in clear-text over vast coverage areas.

This paper delves into the underlying causes of this insecure network design, presenting the case that physical characteristics effecting TCP performance and the widespread use of Performance Enhancing Proxies (PEPs) have created the perception of a security/performance trade-off in these networks. A review of previous mitigation attempts finds limited real-world adoption due to a variety of factors ranging from misaligned commercial incentives to the prevalence of unverified ``black-box'' encryption products.

To address these shortcomings, we design and implement a fully open-source and encrypted-by-default PEP/VPN hybrid, call QPEP. Built around the QUIC standard, QPEP enables individuals to encrypt satellite traffic without ISP involvement. Additionally, we present an open and replicable Docker-based testbed for benchmarking satellite PEPs like QPEP through simulation. These experiments show that QPEP enables satellite customers to encrypt their TCP traffic with up to 65% faster page load times (PLTs) compared to traditional VPN encryption. Even relative to unencrypted PEPs, QPEP offers up to 45% faster PLTs while adding over-the-air security. We briefly evaluate additional tweaks to QUIC which may further optimize QPEP performance. Together, these assessments suggest that QPEP represents a promising new technique for bringing both security and performance to high-latency satellite broadband without requiring alterations to status-quo network implementations.

View More Papers

Data Poisoning Attacks to Deep Learning Based Recommender Systems

Hai Huang (Tsinghua University), Jiaming Mu (Tsinghua University), Neil Zhenqiang Gong (Duke University), Qi Li (Tsinghua University), Bin Liu (West Virginia University), Mingwei Xu (Tsinghua University)

Read More

OblivSketch: Oblivious Network Measurement as a Cloud Service

Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Read More

Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton (University of Adelaide), Niels Samwel (Radboud University), Lejla Batina (Radboud University), Francesco Regazzoni (University of Amsterdam and ALaRI – USI), Markus Wagner (University of Adelaide), Yuval Yarom (University of Adelaide and Data61)

Read More

Taking a Closer Look at the Alexa Skill Ecosystem

Christopher Lentzsch (Ruhr-Universität Bochum), Anupam Das (North Carolina State University)

Read More