Adil Ahmad (Purdue University), Juhee Kim (Seoul National University), Jaebaek Seo (Google), Insik Shin (KAIST), Pedro Fonseca (Purdue University), Byoungyoung Lee (Seoul National University)

Intel SGX aims to provide the confidentiality of user data on untrusted cloud machines. However, applications that process confidential user data may contain bugs that leak information or be programmed maliciously to collect user data. Existing research that attempts to solve this problem does not consider multi-client isolation in a single enclave. We show that by not supporting such isolation, they incur considerable slowdown when concurrently processing multiple clients in different processes, due to the limitations of SGX.

This paper proposes CHANCEL, a sandbox designed for multi-client isolation within a single SGX enclave. In particular, CHANCEL allows a program’s threads to access both a per-thread memory region and a shared read-only memory region while servicing requests. Each thread handles requests from a single client at a time and is isolated from other threads, using a Multi-Client Software Fault Isolation (MCSFI) scheme. Furthermore, CHANCEL supports various in-enclave services such as an in-memory file system and shielded client communication to ensure complete mediation of the program’s interactions with the outside world. We implemented CHANCEL and evaluated it on SGX hardware using both micro-benchmarks and realistic target scenarios, including private information retrieval and product recommendation services. Our results show that CHANCEL outperforms a baseline multi-process sandbox between 4.06−53.70× on micro-benchmarks and 0.02 − 21.18× on realistic workloads while providing strong security guarantees.

View More Papers

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Read More

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

Refining Indirect Call Targets at the Binary Level

Sun Hyoung Kim (Penn State), Cong Sun (Xidian University), Dongrui Zeng (Penn State), Gang Tan (Penn State)

Read More

Data Poisoning Attacks to Deep Learning Based Recommender Systems

Hai Huang (Tsinghua University), Jiaming Mu (Tsinghua University), Neil Zhenqiang Gong (Duke University), Qi Li (Tsinghua University), Bin Liu (West Virginia University), Mingwei Xu (Tsinghua University)

Read More