Christoph Hagen (University of Würzburg), Christian Weinert (TU Darmstadt), Christoph Sendner (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Thomas Schneider (TU Darmstadt)

Contact discovery allows users of mobile messengers to conveniently connect with people in their address book. In this work, we demonstrate that severe privacy issues exist in currently deployed contact discovery methods.

Our study of three popular mobile messengers (WhatsApp, Signal, and Telegram) shows that, contrary to expectations, large-scale crawling attacks are (still) possible. Using an accurate database of mobile phone number prefixes and very few resources, we have queried 10% of US mobile phone numbers for WhatsApp and 100% for Signal. For Telegram we find that its API exposes a wide range of sensitive information, even about numbers not registered with the service. We present interesting (cross-messenger) usage statistics, which also reveal that very few users change the default privacy settings. Regarding mitigations, we propose novel techniques to significantly limit the feasibility of our crawling attacks, especially a new incremental contact discovery scheme that strictly improves over Signal's current approach.

Furthermore, we show that currently deployed hashing-based contact discovery protocols are severely broken by comparing three methods for efficient hash reversal of mobile phone numbers. For this, we also propose a significantly improved rainbow table construction for non-uniformly distributed inputs that is of independent interest.

View More Papers

Detecting Tor Bridge from Sampled Traffic in Backbone Networks

Hua Wu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration Southeast University, Ministry of Education, Jiangsu Nanjing, Purple Mountain Laboratories for Network and Communication Security (Nanjing, Jiangsu)), Shuyi Guo, Guang Cheng, Xiaoyan Hu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration…

Read More

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Read More

(Short) WIP: End-to-End Analysis of Adversarial Attacks to Automated...

Hengyi Liang, Ruochen Jiao (Northwestern University), Takami Sato, Junjie Shen, Qi Alfred Chen (UC Irvine), and Qi Zhu (Northwestern University) Best Short Paper Award Winner!

Read More

SerialDetector: Principled and Practical Exploration of Object Injection Vulnerabilities...

Mikhail Shcherbakov (KTH Royal Institute of Technology), Musard Balliu (KTH Royal Institute of Technology)

Read More