Yonghwi Kwon (University of Virginia), Weihang Wang (University at Buffalo, SUNY), Jinho Jung (Georgia Institute of Technology), Kyu Hyung Lee (University of Georgia), Roberto Perdisci (Georgia Institute of Technology and University of Georgia)

Cybercrime scene reconstruction that aims to reconstruct a previous execution of the cyber attack delivery process is an important capability for cyber forensics (e.g., post mortem analysis of the cyber attack executions). Unfortunately, existing techniques such as log-based forensics or record-and-replay techniques are not suitable to handle complex and long-running modern applications for cybercrime scene reconstruction and post mortem forensic analysis. Specifically, log-based cyber forensics techniques often suffer from a lack of inspection capability and do not provide details of how the attack unfolded. Record-and-replay techniques impose significant runtime overhead, often require significant modifications on end-user systems, and demand to replay the entire recorded execution from the beginning. In this paper, we propose C^2SR, a novel technique that can reconstruct an attack delivery chain (i.e., cybercrime scene) for post-mortem forensic analysis. It provides a highly desired capability: interactable partial execution reconstruction. In particular, it reproduces a partial execution of interest from a large execution trace of a long-running program. The reconstructed execution is also interactable, allowing forensic analysts to leverage debugging and analysis tools that did not exist on the recorded machine. The key intuition behind C^2SR is partitioning an execution trace by resources and reproducing resource accesses that are consistent with the original execution. It tolerates user interactions required for inspections that do not cause inconsistent resource accesses. Our evaluation results on 26 real-world programs show that C^2SR has low runtime overhead (less than 5.47%) and acceptable space overhead. We also demonstrate with four realistic attack scenarios that C^2SR successfully reconstructs partial executions of long-running applications such as web browsers, and it can remarkably reduce the user's efforts to understand the incident.

View More Papers

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More

Demo #9: Attacking Multi-Sensor Fusion based Localization in High-Level...

Junjie Shen, Jun Yeon Won, Zeyuan Chen and Qi Alfred Chen (UC Irvine)

Read More

Favocado: Fuzzing the Binding Code of JavaScript Engines Using...

Sung Ta Dinh (Arizona State University), Haehyun Cho (Arizona State University), Kyle Martin (North Carolina State University), Adam Oest (PayPal, Inc.), Kyle Zeng (Arizona State University), Alexandros Kapravelos (North Carolina State University), Gail-Joon Ahn (Arizona State University and Samsung Research), Tiffany Bao (Arizona State University), Ruoyu Wang (Arizona State University), Adam Doupe (Arizona State University),…

Read More

More than a Fair Share: Network Data Remanence Attacks...

Leila Rashidi (University of Calgary), Daniel Kostecki (Northeastern University), Alexander James (University of Calgary), Anthony Peterson (Northeastern University), Majid Ghaderi (University of Calgary), Samuel Jero (MIT Lincoln Laboratory), Cristina Nita-Rotaru (Northeastern University), Hamed Okhravi (MIT Lincoln Laboratory), Reihaneh Safavi-Naini (University of Calgary)

Read More