Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Modern blockchains have evolved from cryptocurrency substrates to trust-decentralization platforms, supporting a wider variety of decentralized applications known as DApps. Blockchain remote procedure call (RPC) services emerge as an intermediary connecting the DApps to a blockchain network. In this work, we identify the free contract-execution capabilities that widely exist in blockchain RPCs as a vulnerability of denial of service (DoS) and present the DoERS attack, a Denial of Ethereum RPC service that incurs zero Ether cost to the attacker.

To understand the DoERS exploitability in the wild, we conduct a systematic measurement study on nine real-world RPC services which control most DApp clients' connection to the Ethereum mainnet. In particular, we propose a novel measurement technique based on orphan transactions to discover the previously unknown behaviors inside the blackbox RPC services, including load balancing and gas limiting. Further DoERS strategies are proposed to evade the protection intended by these behaviors.

We evaluate the effectiveness of DoERS attacks on deployed RPC services with minimal service interruption. The result shows that all the nine services tested (as of Apr. 2020) are vulnerable to DoERS attacks that can result in the service latency increased by $2.1Xsim{}50X$. Some of these attacks require only a single request. In addition, on a local Ethereum node protected by a very restrictive limit of $0.65$ block gas, sending 150 DoERS requests per second can slow down the block synchronization of the victim node by $91%$.

We propose mitigation techniques against DoERS without dropping service usability, via unpredictable load balancing, performance anomaly detection, and others. These techniques can be integrated into a RPC service transparently to its clients.

View More Papers

Data Analytics and Expert Judgment in Time of Crisis:...

Igor Linkov, PhD Senior Science and Technology Manager, US Army Engineer Research and Development Center; Senior Data Analyst (on detail), FEMA/HHS R1 COVID Task Force; Adjunct Professor, Carnegie Mellon University

Read More

(Short) WIP: End-to-End Analysis of Adversarial Attacks to Automated...

Hengyi Liang, Ruochen Jiao (Northwestern University), Takami Sato, Junjie Shen, Qi Alfred Chen (UC Irvine), and Qi Zhu (Northwestern University) Best Short Paper Award Winner!

Read More

Awakening the Web's Sleeper Agents: Misusing Service Workers for...

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Demo #1: Curricular Reinforcement Learning for Robust Policy in...

Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Read More