Hyun Bin Lee (University of Illinois at Urbana-Champaign), Tushar M. Jois (Johns Hopkins University), Christopher W. Fletcher (University of Illinois at Urbana-Champaign), Carl A. Gunter (University of Illinois at Urbana-Champaign)

Users can improve the security of remote communications by using Trusted Execution Environments (TEEs) to protect against direct introspection and tampering of sensitive data. This can even be done with applications coded in high-level languages with complex programming stacks such as R, Python, and Ruby. However, this creates a trade-off between programming convenience versus the risk of attacks using microarchitectural side channels.

In this paper, we argue that it is possible to address this problem for important applications by instrumenting a complex programming environment (like R) to produce a Data-Oblivious Transcript (DOT) that is explicitly designed to support computation that excludes side channels. Such a transcript is then evaluated on a Trusted Execution Environment (TEE) containing the sensitive data using a small trusted computing base called the Data-Oblivious Virtual Environment (DOVE).

To motivate the problem, we demonstrate a number of subtle side-channel vulnerabilities in the R language. We then provide an illustrative design and implementation of DOVE for R, creating the first side-channel resistant R programming stack. We demonstrate that the two-phase architecture provided by DOT generation and DOVE evaluation can provide practical support for complex programming languages with usable performance and high security assurances against side channels.

View More Papers

Location Data and COVID-19 Contact Tracing: How Data Privacy...

Callie Monroe, Faiza Tazi, Sanchari Das (university of Denver)

Read More

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

From WHOIS to WHOWAS: A Large-Scale Measurement Study of...

Chaoyi Lu (Tsinghua University; Beijing National Research Center for Information Science and Technology), Baojun Liu (Tsinghua University; Beijing National Research Center for Information Science and Technology; Qi An Xin Group), Yiming Zhang (Tsinghua University; Beijing National Research Center for Information Science and Technology), Zhou Li (University of California, Irvine), Fenglu Zhang (Tsinghua University), Haixin Duan…

Read More