Zhiwei Shang (University of Waterloo), Simon Oya (University of Waterloo), Andreas Peter (University of Twente), Florian Kerschbaum (University of Waterloo)

Searchable Symmetric Encryption (SSE) allows a data owner to securely outsource its encrypted data to a cloud server while maintaining the ability to search over it and retrieve matched documents. Most existing SSE schemes leak which documents are accessed per query, i.e., the so-called access pattern, and thus are vulnerable to attacks that can recover the database or the queried keywords. Current techniques that fully hide access patterns, such as ORAM or PIR, suffer from heavy communication or computational costs, and are not designed with search capabilities in mind. Recently, Chen et al. (INFOCOM'18) proposed an obfuscation framework for SSE that protects the access pattern in a differentially private way with a reasonable utility cost. However, this scheme always produces the same obfuscated access pattern when querying for the same keyword, and thus leaks the so-called search pattern, i.e., how many times a certain query is performed. This leakage makes the proposal vulnerable to certain database and query recovery attacks.

In this paper, we propose OSSE (Obfuscated SSE), an SSE scheme that obfuscates the access pattern independently for each query performed. This in turn hides the search pattern and makes our scheme resistant against attacks that rely on this leakage. Given certain reasonable assumptions on the database and query distribution, our scheme has smaller communication overhead than ORAM-based SSE. Furthermore, our scheme works in a single communication round and requires very small constant client-side storage. Our empirical evaluation shows that OSSE is highly effective at protecting against different query recovery attacks while keeping a reasonable utility level. Our protocol provides significantly more protection than the proposal by Chen et al. against some state-of-the-art attacks, which demonstrates the importance of hiding search patterns in designing effective privacy-preserving SSE schemes.

View More Papers

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More

A Devil of a Time: How Vulnerable is NTP...

Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

Read More

My Past Dictates my Present: Relevance, Exposure, and Influence...

Shujaat Mirza, Christina Pöpper (New York University)

Read More

(Short) WIP: End-to-End Analysis of Adversarial Attacks to Automated...

Hengyi Liang, Ruochen Jiao (Northwestern University), Takami Sato, Junjie Shen, Qi Alfred Chen (UC Irvine), and Qi Zhu (Northwestern University) Best Short Paper Award Winner!

Read More