Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

We introduce emph{screen gleaning}, a TEMPEST attack in which the screen of a mobile device is read without a visual line of sight, revealing sensitive information displayed on the phone screen. The screen gleaning attack uses an antenna and a software-defined radio (SDR) to pick up the electromagnetic signal that the device sends to the screen to display, e.g., a message with a security code. This special equipment makes it possible to recreate the signal as a gray-scale image, which we refer to as an emph{emage}. Here, we show that it can be used to read a security code. The screen gleaning attack is challenging because it is often impossible for a human viewer to interpret the emage directly. We show that this challenge can be addressed with machine learning, specifically, a deep learning classifier. Screen gleaning will become increasingly serious as SDRs and deep learning continue to rapidly advance. In this paper, we demonstrate the security code attack and we propose a testbed that provides a standard setup in which screen gleaning could be tested with different attacker models. Finally, we analyze the dimensions of screen gleaning attacker models and discuss possible countermeasures with the potential to address them.

View More Papers

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

QPEP: An Actionable Approach to Secure and Performant Broadband...

James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More

CHANCEL: Efficient Multi-client Isolation Under Adversarial Programs

Adil Ahmad (Purdue University), Juhee Kim (Seoul National University), Jaebaek Seo (Google), Insik Shin (KAIST), Pedro Fonseca (Purdue University), Byoungyoung Lee (Seoul National University)

Read More