Ioannis Demertzis (University of Maryland), Javad Ghareh Chamani (Hong Kong University of Science and Technology & Sharif University of Technology), Dimitrios Papadopoulos (Hong Kong University of Science and Technology), Charalampos Papamanthou (University of Maryland)

We study the problem of dynamic searchable encryption (DSE) with forward-and-backward privacy. Many DSE schemes have been proposed recently but the most efficient ones have one limitation: they require maintaining an operation counter for each unique keyword, either stored locally at the client or accessed obliviously (e.g., with an oblivious map) at the server, during every operation. We propose three new schemes that overcome the above limitation and achieve constant permanent client storage with improved performance, both asymptotically and experimentally, compared to prior state-of-the-art works. In particular, our first two schemes adopt a "static-to-dynamic" transformation which eliminates the need for oblivious accesses during searches. Due to this, they are the first practical schemes with minimal client storage and non-interactive search. Our third scheme is the first quasi-optimal forward-and-backward DSE scheme with only a logarithmic overhead for retrieving the query result (independently of previous deletions). While it does require an oblivious access during search in order to keep permanent client storage minimal, its practical performance is up to four orders of magnitude better than the best existing scheme with quasi-optimal search.

View More Papers

Et Tu Alexa? When Commodity WiFi Devices Turn into...

Yanzi Zhu (UC Santa Barbara), Zhujun Xiao (University of Chicago), Yuxin Chen (University of Chicago), Zhijing Li (UC Santa Barbara), Max Liu (University of Chicago), Ben Y. Zhao (University of Chicago), Heather Zheng (University of Chicago)

Read More

CDN Judo: Breaking the CDN DoS Protection with Itself

Run Guo (Tsinghua University), Weizhong Li (Tsinghua University), Baojun Liu (Tsinghua University), Shuang Hao (University of Texas at Dallas), Jia Zhang (Tsinghua University), Haixin Duan (Tsinghua University), Kaiwen Sheng (Tsinghua University), Jianjun Chen (ICSI), Ying Liu (Tsinghua University)

Read More

CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples

Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing Hua University), Tsung-Yi Ho (National Tsing Hua University), Yier Jin (University of Florida)

Read More

When Malware is Packin' Heat; Limits of Machine Learning...

Hojjat Aghakhani (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Francesco Mecca (Università degli Studi di Torino), Martina Lindorfer (TU Wien), Stefano Ortolani (Lastline Inc.), Davide Balzarotti (Eurecom), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara)

Read More