Ioannis Demertzis (University of Maryland), Javad Ghareh Chamani (Hong Kong University of Science and Technology & Sharif University of Technology), Dimitrios Papadopoulos (Hong Kong University of Science and Technology), Charalampos Papamanthou (University of Maryland)

We study the problem of dynamic searchable encryption (DSE) with forward-and-backward privacy. Many DSE schemes have been proposed recently but the most efficient ones have one limitation: they require maintaining an operation counter for each unique keyword, either stored locally at the client or accessed obliviously (e.g., with an oblivious map) at the server, during every operation. We propose three new schemes that overcome the above limitation and achieve constant permanent client storage with improved performance, both asymptotically and experimentally, compared to prior state-of-the-art works. In particular, our first two schemes adopt a "static-to-dynamic" transformation which eliminates the need for oblivious accesses during searches. Due to this, they are the first practical schemes with minimal client storage and non-interactive search. Our third scheme is the first quasi-optimal forward-and-backward DSE scheme with only a logarithmic overhead for retrieving the query result (independently of previous deletions). While it does require an oblivious access during search in order to keep permanent client storage minimal, its practical performance is up to four orders of magnitude better than the best existing scheme with quasi-optimal search.

View More Papers

Secure Sublinear Time Differentially Private Median Computation

Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

Read More

Et Tu Alexa? When Commodity WiFi Devices Turn into...

Yanzi Zhu (UC Santa Barbara), Zhujun Xiao (University of Chicago), Yuxin Chen (University of Chicago), Zhijing Li (UC Santa Barbara), Max Liu (University of Chicago), Ben Y. Zhao (University of Chicago), Heather Zheng (University of Chicago)

Read More

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More

Melting Pot of Origins: Compromising the Intermediary Web Services...

Takuya Watanabe (NTT), Eitaro Shioji (NTT), Mitsuaki Akiyama (NTT), Tatsuya Mori (Waseda University, NICT, and RIKEN AIP)

Read More