Thijs van Ede (University of Twente), Riccardo Bortolameotti (Bitdefender), Andrea Continella (UC Santa Barbara), Jingjing Ren (Northeastern University), Daniel J. Dubois (Northeastern University), Martina Lindorfer (TU Wien), David Choffnes (Northeastern University), Maarten van Steen (University of Twente), Andreas Peter (University of Twente)

Mobile-application fingerprinting of network traffic is a valuable tool for many security solutions as it provides insights into the apps active on a network.
Unfortunately, existing techniques require prior knowledge of apps to be able to recognize them.
However, mobile environments are constantly evolving, i.e., apps are regularly installed, updated, and uninstalled.
Therefore, it is infeasible for existing fingerprinting approaches to cover all apps that may appear on a network.
Moreover, most mobile traffic is encrypted, shows similarities with other apps, e.g., due to common libraries or the use of content delivery networks, and depends on user input, further complicating the fingerprinting process.

As a solution, we propose FlowPrint, an unsupervised approach for creating mobile app fingerprints from (encrypted) network traffic.
We automatically find temporal correlations among destination-related features of network traffic and use these correlations to generate app fingerprints.
As this approach is unsupervised, we are able to fingerprint previously unseen apps, something that existing techniques fail to achieve.
We evaluate our approach for both Android and iOS in the setting of app recognition where we achieve an accuracy of 89.2%, outperforming state-of-the-art solutions by 39.0%.
In addition, we show that our approach can detect previously unseen apps with a precision of 93.5%, detecting 72.3% of apps within the first five minutes of communication.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 39 ) ) ) [post__not_in] => Array ( [0] => 5915 ) )

SVLAN: Secure & Scalable Network Virtualization

Jonghoon Kwon (ETH), Taeho Lee (ETH), Claude Hähni (ETH), Adrian Perrig (ETH)

Read More

MACAO: A Maliciously-Secure and Client-Efficient Active ORAM Framework

Thang Hoang (University of South Florida), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila Yavuz (University of South Florida)

Read More

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More

Cross-Origin State Inference (COSI) Attacks: Leaking Web Site States...

Avinash Sudhodanan (IMDEA Software Institute), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Juan Caballero (IMDEA Software Institute)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)