Thijs van Ede (University of Twente), Riccardo Bortolameotti (Bitdefender), Andrea Continella (UC Santa Barbara), Jingjing Ren (Northeastern University), Daniel J. Dubois (Northeastern University), Martina Lindorfer (TU Wien), David Choffnes (Northeastern University), Maarten van Steen (University of Twente), Andreas Peter (University of Twente)

Mobile-application fingerprinting of network traffic is a valuable tool for many security solutions as it provides insights into the apps active on a network.
Unfortunately, existing techniques require prior knowledge of apps to be able to recognize them.
However, mobile environments are constantly evolving, i.e., apps are regularly installed, updated, and uninstalled.
Therefore, it is infeasible for existing fingerprinting approaches to cover all apps that may appear on a network.
Moreover, most mobile traffic is encrypted, shows similarities with other apps, e.g., due to common libraries or the use of content delivery networks, and depends on user input, further complicating the fingerprinting process.

As a solution, we propose FlowPrint, an unsupervised approach for creating mobile app fingerprints from (encrypted) network traffic.
We automatically find temporal correlations among destination-related features of network traffic and use these correlations to generate app fingerprints.
As this approach is unsupervised, we are able to fingerprint previously unseen apps, something that existing techniques fail to achieve.
We evaluate our approach for both Android and iOS in the setting of app recognition where we achieve an accuracy of 89.2%, outperforming state-of-the-art solutions by 39.0%.
In addition, we show that our approach can detect previously unseen apps with a precision of 93.5%, detecting 72.3% of apps within the first five minutes of communication.

View More Papers

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

You Are What You Do: Hunting Stealthy Malware via...

Qi Wang (University of Illinois Urbana-Champaign), Wajih Ul Hassan (University of Illinois Urbana-Champaign), Ding Li (NEC Laboratories America, Inc.), Kangkook Jee (University of Texas at Dallas), Xiao Yu (NEC Laboratories America, Inc.), Kexuan Zou (University Of Illinois Urbana-Champaign), Junghwan Rhee (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Wei Cheng (NEC Laboratories America,…

Read More

UIScope: Accurate, Instrumentation-free, and Visible Attack Investigation for GUI...

Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Read More

SurfingAttack: Interactive Hidden Attack on Voice Assistants Using Ultrasonic...

Qiben Yan (Michigan State University), Kehai Liu (Chinese Academy of Sciences), Qin Zhou (University of Nebraska-Lincoln), Hanqing Guo (Michigan State University), Ning Zhang (Washington University in St. Louis)

Read More