Run Guo (Tsinghua University), Weizhong Li (Tsinghua University), Baojun Liu (Tsinghua University), Shuang Hao (University of Texas at Dallas), Jia Zhang (Tsinghua University), Haixin Duan (Tsinghua University), Kaiwen Sheng (Tsinghua University), Jianjun Chen (ICSI), Ying Liu (Tsinghua University)

Content Delivery Network (CDN) improves the websites' accessing performance and availability with its globally distributed network infrastructures, which contributes to the flourish of CDN-powered websites on the Internet. As CDN-powered websites are normally operating important businesses or critical services, the attackers are mostly interested to take down these high-value websites, achieving severe damage with maximum influence. As the CDN absorbs distributed attacking traffic with its massive bandwidth resources, CDN vendors have always claimed that they provide effective DoS protection for the CDN-powered websites.

However, we reveal that, implementation or protocol weaknesses in the CDN's forwarding mechanism can be exploited to break the CDN protection. By sending crafted but legal requests, an attacker can launch an efficient DoS attack against the website Origin behind.
In particular, we present three CDN threats in this study.
Through abusing the CDN's HTTP/2 request converting behavior and HTTP pre-POST behavior, an attacker can saturate the CDN-Origin bandwidth and exhaust the Origin's connection limits.
What is more concerning is that, some CDN vendors only use a small set of traffic forwarding IPs with lower IP-churning ratio to establish connections with the Origin. This characteristic provides a great opportunity for an attacker to effectively degrade the website's global availability, by just cutting off specific CDN-Origin connections.

In this work, we examine the CDN's request-forwarding behaviors across six well-known CDN vendors, and we perform real-world experiments to evaluate the severity of the threats. As the threats are caused by the CDN vendor's poor trade-offs between usability and security, we discuss the possible mitigations, and we receive positive feedback after responsible disclosure to related CDN vendors.

View More Papers

Proof of Storage-Time: Efficiently Checking Continuous Data Availability

Giuseppe Ateniese (Stevens Institute of Technology), Long Chen (New Jersey Institute of Technology), Mohammard Etemad (Stevens Institute of Technology), Qiang Tang (New Jersey Institute of Technology)

Read More

Not All Coverage Measurements Are Equal: Fuzzing by Coverage...

Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Read More

IMP4GT: IMPersonation Attacks in 4G NeTworks

David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Read More

Towards Plausible Graph Anonymization

Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More