Dimitrios Sikeridis (The University of New Mexico), Panos Kampanakis (Cisco Systems), Michael Devetsikiotis (The University of New Mexico)

The potential development of large-scale quantum computers is raising concerns among IT and security research professionals due to their ability to solve (elliptic curve) discrete logarithm and integer factorization problems in polynomial time. There is, therefore, a threat to public-key cryptography as all the currently used algorithms would be deemed insecure in a post-quantum (PQ) setting. In response, the National Institute of Standards and Technology (NIST) has initiated a process to standardize quantum-resistant crypto algorithms, focusing primarily on their security guarantees. Since PQ algorithms present significant differences over classical ones, their overall assessment should not be performed out-of-context. This work presents a detailed performance evaluation of the NIST signature algorithm candidates and investigates the imposed latency on TLS 1.3 connection establishment under realistic network conditions. In addition, we investigate their impact on the achievable TLS session throughput of a server and analyze the trade-off between lengthier PQ signatures, and computationally heavier PQ cryptographic operations for idle and heavily loaded servers. Our results demonstrate that the adoption of at least two PQ signature algorithms would indeed be viable for time-sensitive applications over TLS with little additional overhead over current signature algorithms. Also, we argue that more of the NIST PQ candidates can effectively be used for less time-sensitive applications, and provide an in-depth discussion on the integration of PQ authentication in encrypted tunneling protocols, along with the related challenges, and alternatives. Finally, we propose and evaluate the combination of different PQ signature algorithms across the same certificate chain in TLS. Results show a reduction of the TLS handshake time and a significant increase of a server's TLS tunnel connection rate over the alternative of the chain using a single PQ signature scheme.

View More Papers

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

SymTCP: Eluding Stateful Deep Packet Inspection with Automated Discrepancy...

Zhongjie Wang (University of California, Riverside), Shitong Zhu (University of California, Riverside), Yue Cao (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside), Kevin S. Chan (U.S. Army Research Lab), Tracy D. Braun (U.S. Army Research Lab)

Read More

DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of...

Hui Lin (University of Nevada, Reno), Jianing Zhuang (University of Nevada, Reno), Yih-Chun Hu (University of Illinois, Urbana-Champaign), Huayu Zhou (University of Nevada, Reno)

Read More