Tao Wang (Hong Kong University of Science and Technology)

Tor is an anonymity network that allows clients to browse web pages privately, but loading web pages with Tor is slow. To analyze how the browser loads web pages, we examine their resource trees using our new browser logging and simulation tool, BLAST. We find that the time it takes to load a web page with Tor is almost entirely determined by the number of round trips incurred, not its bandwidth, and Tor Browser incurs unnecessary round trips. Resources sit in the browser queue excessively waiting for the TCP, TLS or ALPN handshakes, each of which takes a separate round trip. We show that increasing resource loading capacity with larger pipelines and even HTTP/2 do not decrease load time because they do not save round trips.

We set out to minimize round trips with a number of protocol and browser improvements, including TCP Fast Open, optimistic data, zero-RTT TLS. We also recommend the use of databases to assist the client with redirection, identifying HTTP/2 servers, and prefetching. All of these features are designed to cut down on the number of round trips incurred in loading web pages. To evaluate these proposed improvements, we create a simulation tool and validate that it is highly accurate in predicting mean page load times. We use the simulator to analyze these features and it predicts that they will decrease the mean page load time by 61% in total over HTTP/2. Our large improvement to user experience comes at trivial cost to the Tor network.

View More Papers

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Harsh Chaudhari (Indian Institute of Science, Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

Detecting Probe-resistant Proxies

Sergey Frolov (University of Colorado Boulder), Jack Wampler (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More