Tao Wang (Hong Kong University of Science and Technology)

Tor is an anonymity network that allows clients to browse web pages privately, but loading web pages with Tor is slow. To analyze how the browser loads web pages, we examine their resource trees using our new browser logging and simulation tool, BLAST. We find that the time it takes to load a web page with Tor is almost entirely determined by the number of round trips incurred, not its bandwidth, and Tor Browser incurs unnecessary round trips. Resources sit in the browser queue excessively waiting for the TCP, TLS or ALPN handshakes, each of which takes a separate round trip. We show that increasing resource loading capacity with larger pipelines and even HTTP/2 do not decrease load time because they do not save round trips.

We set out to minimize round trips with a number of protocol and browser improvements, including TCP Fast Open, optimistic data, zero-RTT TLS. We also recommend the use of databases to assist the client with redirection, identifying HTTP/2 servers, and prefetching. All of these features are designed to cut down on the number of round trips incurred in loading web pages. To evaluate these proposed improvements, we create a simulation tool and validate that it is highly accurate in predicting mean page load times. We use the simulator to analyze these features and it predicts that they will decrease the mean page load time by 61% in total over HTTP/2. Our large improvement to user experience comes at trivial cost to the Tor network.

View More Papers

Detecting Probe-resistant Proxies

Sergey Frolov (University of Colorado Boulder), Jack Wampler (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Mind the Portability: A Warriors Guide through Realistic Profiled...

Shivam Bhasin (Nanyang Technological University), Anupam Chattopadhyay (Nanyang Technological University), Annelie Heuser (Univ Rennes, Inria, CNRS, IRISA), Dirmanto Jap (Nanyang Technological University), Stjepan Picek (Delft University of Technology), Ritu Ranjan Shrivastwa (Secure-IC)

Read More

Locally Differentially Private Frequency Estimation with Consistency

Tianhao Wang (Purdue University), Milan Lopuhaä-Zwakenberg (Eindhoven University of Technology), Zitao Li (Purdue University), Boris Skoric (Eindhoven University of Technology), Ninghui Li (Purdue University)

Read More