Tao Wang (Hong Kong University of Science and Technology)

Tor is an anonymity network that allows clients to browse web pages privately, but loading web pages with Tor is slow. To analyze how the browser loads web pages, we examine their resource trees using our new browser logging and simulation tool, BLAST. We find that the time it takes to load a web page with Tor is almost entirely determined by the number of round trips incurred, not its bandwidth, and Tor Browser incurs unnecessary round trips. Resources sit in the browser queue excessively waiting for the TCP, TLS or ALPN handshakes, each of which takes a separate round trip. We show that increasing resource loading capacity with larger pipelines and even HTTP/2 do not decrease load time because they do not save round trips.

We set out to minimize round trips with a number of protocol and browser improvements, including TCP Fast Open, optimistic data, zero-RTT TLS. We also recommend the use of databases to assist the client with redirection, identifying HTTP/2 servers, and prefetching. All of these features are designed to cut down on the number of round trips incurred in loading web pages. To evaluate these proposed improvements, we create a simulation tool and validate that it is highly accurate in predicting mean page load times. We use the simulator to analyze these features and it predicts that they will decrease the mean page load time by 61% in total over HTTP/2. Our large improvement to user experience comes at trivial cost to the Tor network.

View More Papers

SVLAN: Secure & Scalable Network Virtualization

Jonghoon Kwon (ETH), Taeho Lee (ETH), Claude Hähni (ETH), Adrian Perrig (ETH)

Read More

A Practical Approach for Taking Down Avalanche Botnets Under...

Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

Read More

You Are What You Do: Hunting Stealthy Malware via...

Qi Wang (University of Illinois Urbana-Champaign), Wajih Ul Hassan (University of Illinois Urbana-Champaign), Ding Li (NEC Laboratories America, Inc.), Kangkook Jee (University of Texas at Dallas), Xiao Yu (NEC Laboratories America, Inc.), Kexuan Zou (University Of Illinois Urbana-Champaign), Junghwan Rhee (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Wei Cheng (NEC Laboratories America,…

Read More

CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples

Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing Hua University), Tsung-Yi Ho (National Tsing Hua University), Yier Jin (University of Florida)

Read More