Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing Hua University), Tsung-Yi Ho (National Tsing Hua University), Yier Jin (University of Florida)

Cloud-based Machine Learning as a Service (MLaaS) is gradually gaining acceptance as a reliable solution to various real-life scenarios. These services typically utilize Deep Neural Networks (DNNs) to perform classification and detection tasks and are accessed through Application Programming Interfaces (APIs). Unfortunately, it is possible for an adversary to steal models from cloud-based platforms, even with black-box constraints, by repeatedly querying the public prediction API with malicious inputs. In this paper, we introduce an effective and efficient black-box attack methodology that extracts largescale DNN models from cloud-based platforms with near-perfect performance. In comparison to existing attack methods, we significantly reduce the number of queries required to steal the target model by incorporating several novel algorithms, including active learning, transfer learning, and adversarial attacks. During our experimental evaluations, we validate our proposed model for conducting theft attacks on various commercialized MLaaS platforms including two Microsoft Custom Vision APIs (Microsoft Traffic Recognition API and Microsoft Flower Recognition API), the Face++ Emotion Recognition API, the IBM Watson Visual Recognition API, Google AutoML API, and the Clarifai Safe for Work (NSFW) API. Our results demonstrate that the proposed method can easily reveal/steal large-scale DNN models from these cloud platforms. Further, the proposed attack method can also be used to accurately evaluates the robustness of DNN based MLaaS image classifiers against theft attacks.

View More Papers

Mind the Portability: A Warriors Guide through Realistic Profiled...

Shivam Bhasin (Nanyang Technological University), Anupam Chattopadhyay (Nanyang Technological University), Annelie Heuser (Univ Rennes, Inria, CNRS, IRISA), Dirmanto Jap (Nanyang Technological University), Stjepan Picek (Delft University of Technology), Ritu Ranjan Shrivastwa (Secure-IC)

Read More

Designing a Better Browser for Tor with BLAST

Tao Wang (Hong Kong University of Science and Technology)

Read More

Detecting Probe-resistant Proxies

Sergey Frolov (University of Colorado Boulder), Jack Wampler (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

BLAG: Improving the Accuracy of Blacklists

Sivaramakrishnan Ramanathan (University of Southern California/Information Sciences Institute), Jelena Mirkovic (University of Southern California/Information Sciences Institute), Minlan Yu (Harvard University)

Read More