Jonghoon Kwon (ETH), Taeho Lee (ETH), Claude Hähni (ETH), Adrian Perrig (ETH)

Network isolation is a critical modern Internet service. To date, network operators have created a logical network of distributed systems to provide communication isolation between different parties. However, the current network isolation is limited in scalability and flexibility. It limits the number of virtual networks and it only supports isolation at host (or virtual-machine) granularity. In this paper, we introduce Scalable Virtual Local Area Networking (SVLAN) that scales to a large number of distributed systems and offers improved flexibility in providing secure network isolation. With the notion of destination-driven reachability and packet-carrying forwarding state, SVLAN not only offers communication isolation but isolation can be specified at different granularities, e.g., per-application or per-process. Our proof-of-concept SVLAN implementation demonstrates its feasibility and practicality for real-world applications.

View More Papers

OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log Analysis

Wajih Ul Hassan (University of Illinois Urbana-Champaign), Mohammad A. Noureddine (University of Illinois Urbana-Champaign), Pubali Datta (University of Illinois Urbana-Champaign), Adam Bates (University of Illinois Urbana-Champaign)

Read More

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Not All Coverage Measurements Are Equal: Fuzzing by Coverage...

Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Read More

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More