Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

In distributed private learning, e.g., data analysis, machine learning, and enterprise benchmarking, it is commonplace for two parties with confidential data sets to compute statistics over their combined data. The median is an important robust statistical method used in enterprise benchmarking, e.g., companies compare typical employee salaries, insurance companies use median life expectancy to adjust insurance premiums, banks compare credit scores of their customers, and financial regulators estimate risks based on loan exposures.

The exact median can be computed securely, however, it leaks information about the private data. To protect the data sets, we securely compute a differentially private median over the joint data set via the exponential mechanism. The exponential mechanism has a runtime linear in the data universe size and efficiently sampling it is non-trivial. Local differential privacy, where each user shares locally perturbed data with an untrusted server, is often used in private learning but does not provide the same utility as the central model, where noise is only applied once by a trusted server.

We present an efficient secure computation of a differentially private median of the union of two large, confidential data sets. Our protocol has a runtime sublinear in the size of the data universe and utility like the central model without a trusted third party. We use dynamic programming with a static, i.e., data-independent, access pattern, achieving low complexity of the secure computation circuit. We provide a comprehensive evaluation with a large real-world data set with a practical runtime of less than 5 seconds for millions of records even with large network delay of 80ms.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 39 ) ) ) [post__not_in] => Array ( [0] => 5876 ) )

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Read More

UIScope: Accurate, Instrumentation-free, and Visible Attack Investigation for GUI...

Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Read More

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More

µRAI: Securing Embedded Systems with Return Address Integrity

Naif Saleh Almakhdhub (Purdue University and King Saud University), Abraham A. Clements (Sandia National Laboratories), Saurabh Bagchi (Purdue University), Mathias Payer (EPFL)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)