Zhongjie Wang (University of California, Riverside), Shitong Zhu (University of California, Riverside), Yue Cao (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside), Kevin S. Chan (U.S. Army Research Lab), Tracy D. Braun (U.S. Army Research Lab)

A key characteristic of commonly deployed deep packet inspection (DPI) systems is that they implement a simpli- fied state machine of the network stack that often differs from that of the end hosts. The discrepancies between the two state machines have been exploited to bypass such DPI middleboxes. However, most prior approaches to do so rely on manually crafted adversarial packets, which not only is labor-intensive but may not work well across a plurality of DPI-based middleboxes. Our goal in this work is to develop an automated way to craft such candidate packets, targeting TCP implementations in particular. Our approach to achieve this goal hinges on the key insight that while the TCP state machines of DPI implementations are obscure, those of the end hosts are well established. Thus, in our system SYMTCP, using symbolic execution, we systematically explore the TCP implementation of an end host, identifying candidate packets that can reach critical points in the code (e.g., which causes the packets to be accepted or dropped/ignored); such automatically identified packets are then fed through the DPI middlebox to determine if a discrepancy is induced and the middlebox can be bypassed. We find that our approach is extremely effective. It can generate tens of thousands of candidate adversarial packets in less than an hour. When evaluating against multiple state-of-the-art DPI middleboxes such as Zeek and Snort, as well as a state-level censorship firewall, Great Firewall of China, we identify not only previously known evasion strategies, but also novel ones that were never previously reported (e.g., involving urgent pointer). The system can extend easily to test other combinations of operating systems and DPI middleboxes, and serve as a valuable testing tool of future DPIs’ robustness against evasion attempts.

View More Papers

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

DISCO: Sidestepping RPKI's Deployment Barriers

Tomas Hlavacek (Fraunhofer SIT), Italo Cunha (Universidade Federal de Minas Gerais), Yossi Gilad (Hebrew University of Jerusalem), Amir Herzberg (University of Connecticut), Ethan Katz-Bassett (Columbia University), Michael Schapira (Hebrew University of Jerusalem), Haya Shulman (Fraunhofer SIT)

Read More

Automated Cross-Platform Reverse Engineering of CAN Bus Commands From...

Haohuang Wen (The Ohio State University), Qingchuan Zhao (The Ohio State University), Qi Alfred Chen (University of California, Irvine), Zhiqiang Lin (The Ohio State University)

Read More

OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log Analysis

Wajih Ul Hassan (University of Illinois Urbana-Champaign), Mohammad A. Noureddine (University of Illinois Urbana-Champaign), Pubali Datta (University of Illinois Urbana-Champaign), Adam Bates (University of Illinois Urbana-Champaign)

Read More