Parinya Ekparinya (University of Sydney), Vincent Gramoli (University of Sydney and CSIRO-Data61), Guillaume Jourjon (CSIRO-Data61)

The vulnerability of traditional blockchains have been demonstrated at multiple occasions. Various companies are now moving towards Proof-of-Authority (PoA) blockchains with more conventional Byzantine fault tolerance, where a known set of n permissioned sealers, among which no more than t are Byzantine, seal blocks that include user transactions. Despite their wide adoption, these protocols were not proved correct.

In this paper, we present the Cloning Attack against the two mostly deployed PoA implementations of Ethereum, namely Aura and Clique. The Cloning Attack consists of one sealer cloning its pair of public-private keys into two distinct Ethereum instances that communicate with distinct groups of sealers. To identify their vulnerabilities, we first specify the corresponding algorithms. We then deploy one testnet for each protocol and demonstrate the success of the attack with only one Byzantine sealer. Finally, we propose counter-measures that prevent an adversary from double spending and introduce the necessary number of sealers needed to decide a block depending on n and t for both Aura and Clique to be safe.

View More Papers

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

Let's Revoke: Scalable Global Certificate Revocation

Trevor Smith (Brigham Young University), Luke Dickenson (Brigham Young University), Kent Seamons (Brigham Young University)

Read More

DISCO: Sidestepping RPKI's Deployment Barriers

Tomas Hlavacek (Fraunhofer SIT), Italo Cunha (Universidade Federal de Minas Gerais), Yossi Gilad (Hebrew University of Jerusalem), Amir Herzberg (University of Connecticut), Ethan Katz-Bassett (Columbia University), Michael Schapira (Hebrew University of Jerusalem), Haya Shulman (Fraunhofer SIT)

Read More

Snappy: Fast On-chain Payments with Practical Collaterals

Vasilios Mavroudis (University College London), Karl Wüst (ETH Zurich), Aritra Dhar (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More