Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Advanced Persistent Threats (APTs) are difficult to detect due to their “low-and-slow” attack patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based APT detector that effectively leverages data provenance analysis. From modeling to detection, UNICORN tailors its design specifically for the unique characteristics of APTs. Through extensive yet time-efficient graph analysis, UNICORN explores provenance graphs that provide rich contextual and historical information to identify stealthy anomalous activities without pre-defined attack signatures. Using a graph sketching technique, it summarizes long-running system execution with space efficiency to combat slow-acting attacks that take place over a long time span. UNICORN further improves its detection capability using a novel modeling approach to understand long-term behavior as the system evolves. Our evaluation shows that UNICORN outperforms an existing state-of-the-art APT detection system and detects real-life APT scenarios with high accuracy.

View More Papers

Practical Traffic Analysis Attacks on Secure Messaging Applications

Alireza Bahramali (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Ramin Soltani (University of Massachusetts Amherst), Dennis Goeckel (University of Massachusetts Amherst), Don Towsley (University of Massachusetts Amherst)

Read More

FUSE: Finding File Upload Bugs via Penetration Testing

Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

Read More

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Adversarial Classification Under Differential Privacy

Jairo Giraldo (University of Utah), Alvaro Cardenas (UC Santa Cruz), Murat Kantarcioglu (UT Dallas), Jonathan Katz (George Mason University)

Read More