Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Advanced Persistent Threats (APTs) are difficult to detect due to their “low-and-slow” attack patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based APT detector that effectively leverages data provenance analysis. From modeling to detection, UNICORN tailors its design specifically for the unique characteristics of APTs. Through extensive yet time-efficient graph analysis, UNICORN explores provenance graphs that provide rich contextual and historical information to identify stealthy anomalous activities without pre-defined attack signatures. Using a graph sketching technique, it summarizes long-running system execution with space efficiency to combat slow-acting attacks that take place over a long time span. UNICORN further improves its detection capability using a novel modeling approach to understand long-term behavior as the system evolves. Our evaluation shows that UNICORN outperforms an existing state-of-the-art APT detection system and detects real-life APT scenarios with high accuracy.

View More Papers

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

IMP4GT: IMPersonation Attacks in 4G NeTworks

David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Read More

Post-Quantum Authentication in TLS 1.3: A Performance Study

Dimitrios Sikeridis (The University of New Mexico), Panos Kampanakis (Cisco Systems), Michael Devetsikiotis (The University of New Mexico)

Read More

Metal: A Metadata-Hiding File-Sharing System

Weikeng Chen (UC Berkeley), Raluca Ada Popa (UC Berkeley)

Read More