Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Hybrid fuzzing, combining symbolic execution and fuzzing, is a promising approach for vulnerability discovery because each approach can complement the other. However, we observe that applying hybrid fuzzing to kernel testing is challenging because the following unique characteristics of the kernel make a naive adoption of hybrid fuzzing inefficient: 1) having many implicit control transfers determined by syscall arguments, 2) controlling and matching internal system state via system calls, and 3) inferring nested argument type for invoking system calls. Failure to handling such challenges will render both fuzzing and symbolic execution inefficient, and thereby, will result in an inefficient hybrid fuzzing. Although these challenges are essential to both fuzzing and symbolic execution, however, to the best of our knowledge, existing kernel testing approaches either naively use each technique separately without handling such challenges or imprecisely handle a part of challenges only by static analysis.

To this end, this paper proposes HFL, which not only combines fuzzing with symbolic execution for hybrid fuzzing but also addresses kernel-specific fuzzing challenges via three distinct features: 1) converting implicit control transfers to explicit transfers, 2) inferring system call sequence to build a consistent system state, and 3) identifying nested arguments types of system calls. As a result, HFL found 24 previously unknown vulnerabilities in recent Linux kernels. Additionally, HFL achieves 14% higher code coverage than Syzkaller, and over S2E/TriforceAFL, achieving even eight times better coverage, using the same amount of resource (CPU, time, etc.). Regarding vulnerability discovery performance, HFL found 13 known vulnerabilities more than three times faster than Syzkaller.

View More Papers

Into the Deep Web: Understanding E-commerce Fraud from Autonomous...

Peng Wang (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Yue Qin (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Harsh Chaudhari (Indian Institute of Science, Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More