Sergej Schumilo (Ruhr-Universität Bochum), Cornelius Aschermann (Ruhr-Universität Bochum), Ali Abbasi (Ruhr-Universität Bochum), Simon Wörner (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Applying modern fuzzers to novel targets is often a very lucrative venture. Hypervisors are part of a very critical code base: compromising them could allow an attacker to compromise the whole cloud infrastructure of any cloud provider. In this paper, we build a novel fuzzer that aims explicitly at testing modern hypervisors.

Our high throughput fuzzer design for long running interactive targets allows us to fuzz a large number of hypervisors, both open source, and proprietary. In contrast to one-dimensional fuzzers such as AFL, HYPER-CUBE can interact with any number of interfaces in any order.

Our evaluation shows that we can find more bugs (over 2x) and coverage (as much as 2x) than state of the art hypervisor fuzzers. Additionally, in most cases, we were able to do so using multiple orders of magnitude less time than comparable fuzzers. HYPER-CUBE was also able to rediscover a set of well-known vulnerabilities for hypervisors, such as VENOM, in less than five minutes. In total, HYPER-CUBE found 54 novel bugs, and so far we obtained 37 CVEs.

Our evaluation results demonstrates that next generation coverage-guided fuzzers should incorporate a higher-throughput design for long running targets such as hypervisors.

View More Papers

Bobtail: Improved Blockchain Security with Low-Variance Mining

George Bissias (University of Massachusetts Amherst), Brian N. Levine (University of Massachusetts Amherst)

Read More

Automated Cross-Platform Reverse Engineering of CAN Bus Commands From...

Haohuang Wen (The Ohio State University), Qingchuan Zhao (The Ohio State University), Qi Alfred Chen (University of California, Irvine), Zhiqiang Lin (The Ohio State University)

Read More

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Harsh Chaudhari (Indian Institute of Science, Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More