Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Social graphs derived from online social interactions contain a wealth of information that is nowadays extensively used by both industry and academia. However, as social graphs contain sensitive information, they need to be properly anonymized before release. Most of the existing graph anonymization mechanisms rely on the perturbation of the original graph’s edge set. In this paper, we identify a fundamental weakness of these mechanisms: They neglect the strong structural proximity between friends in social graphs, thus add implausible fake edges for anonymization.
To exploit this weakness, we first propose a metric to quantify an edge’s plausibility by relying on graph embedding. Extensive experiments on three real-life social network datasets demonstrate that our plausibility metric can very effectively differentiate fake edges from original edges with AUC values above 0.95 in most of the cases. We then rely on a Gaussian mixture model to automatically derive the threshold on the edge plausibility values to determine whether an edge is fake, which enables us to recover to a large extent the original graph from the anonymized graph. Then, we demonstrate that our graph recovery attack jeopardizes the privacy guarantees provided by the considered graph anonymization mechanisms.
To mitigate this vulnerability, we propose a method to generate fake yet plausible edges given the graph structure and incorporate it into the existing anonymization mechanisms. Our evaluation demonstrates that the enhanced mechanisms decrease the chances of graph recovery, reduce the success of graph de-anonymization (up to 30%), and provide even better utility than the existing anonymization mechanisms.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 39 ) ) ) [post__not_in] => Array ( [0] => 5823 ) )

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

Broken Metre: Attacking Resource Metering in EVM

Daniel Perez (Imperial College London), Benjamin Livshits (Imperial College London, UCL Centre for Blockchain Technologies, and Brave Software)

Read More

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More

DESENSITIZATION: Privacy-Aware and Attack-Preserving Crash Report

Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)