Ben Gras (Vrije Universiteit Amsterdam, Intel Corporation), Cristiano Giuffrida (Vrije Universiteit Amsterdam), Michael Kurth (Vrije Universiteit Amsterdam), Herbert Bos (Vrije Universiteit Amsterdam), Kaveh Razavi (Vrije Universiteit Amsterdam)

The past decade has seen a plethora of side channel attacks on various CPU components. Each new attack typically follows a whitebox analysis approach, which involves (i) identifying a specific shared CPU component, (ii) reversing its behavior on a specific microarchitecture, and (iii) surgically exploiting such knowledge to leak information (e.g., by actively evicting shared entries to monitor victim accesses). This approach requires a deep understanding of the target component, obtained by lengthy reverse engineering which needs to be repeated for each new component and each microarchitecture. It also does not allow for attacking shared resources that are unknown.

In this paper, we present ABSynthe, a system that takes a target program and a microarchitecture as inputs and automatically synthesizes new side channels. The key insight is that by limiting ourselves to (typically on-core) contention-based side channels, we can treat the target CPU microarchitecture as a black box, enabling automation. To make ABSynthe possible, we have automatically generated leakage maps for a variety of x86_64 microarchitectures. These leakage maps show a complex picture and justify a black box approach to finding the best sequence of instructions to cause information to leak from a software target. This target is also treated and analyzed as a blackbox, to find secret-dependent branches. To recover the secret information using the optimized sequence of instructions, ABSynthe relies on a recurrent neural network to craft practical side-channel attacks. Our evaluation, somewhat counter-intuitively, shows that ABSynthe can synthesize better attacks by exploiting contention on multiple components at the same time compared to state of the art contention-based attacks that focus on a single component. Concretely, the automation made possible by ABSynthe allows us to synthesize cross-thread attacks in different settings and for a variety of microarchitectures and cryptographic software targets, in both native and virtualized environments.

We present results for Intel, AMD and ARM microarchitetures, and 4 different cryptographic targets. As an example, ABSynthe can recover a full 256-bit EdDSA from just a single trace capture with 100% success rate on Intel.

View More Papers

Melting Pot of Origins: Compromising the Intermediary Web Services...

Takuya Watanabe (NTT), Eitaro Shioji (NTT), Mitsuaki Akiyama (NTT), Tatsuya Mori (Waseda University, NICT, and RIKEN AIP)

Read More

Withdrawing the BGP Re-Routing Curtain: Understanding the Security Impact...

Jared M. Smith (University of Tennessee, Knoxville), Kyle Birkeland (University of Tennessee, Knoxville), Tyler McDaniel (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

Read More

Automated Discovery of Cross-Plane Event-Based Vulnerabilities in Software-Defined Networking

Benjamin E. Ujcich (University of Illinois at Urbana-Champaign), Samuel Jero (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory), Steven R. Gomez (MIT Lincoln Laboratory), Adam Bates (University of Illinois at Urbana-Champaign), William H. Sanders (University of Illinois at Urbana-Champaign), Hamed Okhravi (MIT Lincoln Laboratory)

Read More

Prevalence and Impact of Low-Entropy Packing Schemes in the...

Alessandro Mantovani (EURECOM), Simone Aonzo (University of Genoa), Xabier Ugarte-Pedrero (Cisco Systems), Alessio Merlo (University of Genoa), Davide Balzarotti (EURECOM)

Read More