Luis Vargas (University of Florida), Logan Blue (University of Florida), Vanessa Frost (University of Florida), Christopher Patton (University of Florida), Nolen Scaife (University of Florida), Kevin R.B. Butler (University of Florida), Patrick Traynor (University of Florida)

Modern hospital systems are complex environments that rely on high interconnectivity with the larger Internet. With this connectivity comes a vast attack surface. Security researchers have expended considerable effort to characterize the risks posed to medical devices (e.g., pacemakers and insulin pumps). However, there has been no systematic, ecosystem-wide analyses of a modern hospital system to date, perhaps due to the challenges of collecting and analyzing sensitive healthcare data. Hospital traffic requires special considerations because healthcare data may contain private information or may come from safety-critical devices in charge of patient care. We describe the process of obtaining the network data in a safe and ethical manner in order to help expand future research in this field. We present an analysis of network-enabled devices connected to the hospital used for its daily operations without posing any harm to the hospital’s environment. We perform a Digital Healthcare- Associated Infection (D-HAI) analysis of the hospital ecosystem, assessing a major multi-campus healthcare system over a period of six months. As part of the D-HAI analysis, we characterize DNS requests and TLS/SSL communications to better understand the threats faced within the hospital environment without disturbing the operational network. Contrary to past assumptions, we find that medical devices have minimal exposure to the external Internet, but that medical support devices (e.g., servers, computer terminals) essential for daily hospital operations are much more exposed. While much of this communication appears to be benign, we discover evidence of insecure and broken cryptography and misconfigured devices, and potential botnet activity. Analyzing the network ecosystem in which they operate gives us an insight into the weaknesses and misconfigurations hospitals need to address to ensure the safety and privacy of patients.

View More Papers

Component-Based Formal Analysis of 5G-AKA: Channel Assumptions and Session...

Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

Read More

We Value Your Privacy ... Now Take Some Cookies:...

Martin Degeling (Ruhr-Universität Bochum), Christine Utz (Ruhr-Universität Bochum), Christopher Lentzsch (Ruhr-Universität Bochum), Henry Hosseini (Ruhr-Universität Bochum), Florian Schaub (University of Michigan), Thorsten Holz (Ruhr-Universität Bochum)

Read More

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

Geo-locating Drivers: A Study of Sensitive Data Leakage in...

Qingchuan Zhao (The Ohio State University), Chaoshun Zuo (The Ohio State University), Giancarlo Pellegrino (CISPA, Saarland University; Stanford University), Zhiqiang Lin (The Ohio State University)

Read More