Victor Le Pochat (imec-DistriNet, KU Leuven), Tom Van Goethem (imec-DistriNet, KU Leuven), Samaneh Tajalizadehkhoob (Delft University of Technology), Maciej Korczyński (Grenoble Alps University), Wouter Joosen (imec-DistriNet, KU Leuven)

In order to evaluate the prevalence of security and privacy practices on a representative sample of the Web, researchers rely on website popularity rankings such as the Alexa list. While the validity and representativeness of these rankings are rarely questioned, our findings show the contrary: we show for four main rankings how their inherent properties (similarity, stability, representativeness, responsiveness and benignness) affect their composition and therefore potentially skew the conclusions made in studies. Moreover, we find that it is trivial for an adversary to manipulate the composition of these lists. We are the first to empirically validate that the ranks of domains in each of the lists are easily altered, in the case of Alexa through as little as a single HTTP request. This allows adversaries to manipulate rankings on a large scale and insert malicious domains into whitelists or bend the outcome of research studies to their will. To overcome the limitations of such rankings, we propose improvements to reduce the fluctuations in list composition and guarantee better defenses against manipulation. To allow the research community to work with reliable and reproducible rankings, we provide Tranco, an improved ranking that we offer through an online service available at https://tranco-list.eu.

View More Papers

BadBluetooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals

Fenghao Xu (The Chinese University of Hong Kong), Wenrui Diao (Jinan University), Zhou Li (University of California, Irvine), Jiongyi Chen (The Chinese University of Hong Kong), Kehuan Zhang (The Chinese University of Hong Kong)

Read More

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Haixu Tang (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More