Giulio Malavolta (Friedrich-Alexander University Erlangen-Nürnberg), Pedro Moreno Sanchez (TU Wien), Clara Schneidewind (TU Wien), Aniket Kate (Purdue University), Matteo Maffei (TU Wien)

Tremendous growth in cryptocurrency usage is exposing the inherent scalability issues with permissionless blockchain technology. Payment-channel networks (PCNs) have emerged as the most widely deployed solution to mitigate the scalability issues, allowing the bulk of payments between two users to be carried out off-chain. Unfortunately, as reported in the literature and further demonstrated in this paper, current PCNs do not provide meaningful security and privacy guarantees [30], [40].
In this work, we study and design secure and privacy-preserving PCNs. We start with a security analysis of existing PCNs, reporting a new attack that applies to all major PCNs, including the Lightning Network, and allows an attacker to steal the fees from honest intermediaries in the same payment path. We then formally define anonymous multi-hop locks (AMHLs), a novel cryptographic primitive that serves as a cornerstone for the design of secure and privacy-preserving PCNs. We present several provably secure cryptographic instantiations that make AMHLs compatible with the vast majority of cryptocurrencies. In particular, we show that (linear) homomorphic one-way functions suffice to construct AMHLs for PCNs supporting a script language (e.g., Ethereum). We also propose a construction based on ECDSA signatures that does not require scripts, thus solving a prominent open problem in the field.
AMHLs constitute a generic primitive whose usefulness goes beyond multi-hop payments in a single PCN and we show how to realize atomic swaps and interoperable PCNs from this primitive. Finally, our performance evaluation on a commodity machine finds that AMHL operations can be performed in less than 100 milliseconds and require less than 500 bytes of communication overhead, even in the worst case. In fact, after acknowledging our attack, the Lightning Network developers have implemented our ECDSA-based AMHLs into their PCN. This demonstrates the practicality of our approach and its impact on the security, privacy, interoperability, and scalability of today’s cryptocurrencies.

View More Papers

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

Countering Malicious Processes with Process-DNS Association

Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Read More