Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Take-down operations aim to disrupt cybercrime involving malicious domains. In the past decade, many successful take-down operations have been reported, including those against the Conficker worm, and most recently, against VPNFilter. Although it plays an important role in fighting cybercrime, the domain take-down procedure is still surprisingly opaque. There seems to be no in-depth understanding about how the take-down operation works and whether there is due diligence to ensure its security and reliability.

In this paper, we report the first systematic study on domain takedown. Our study was made possible via a large collection of data, including various sinkhole feeds and blacklists, passive DNS data spanning six years, and historical Whois information. Over these datasets, we built a unique methodology that extensively used various reverse lookups and other data analysis techniques to address the challenges in identifying taken-down domains, sinkhole operators, and take-down durations. Applying the methodology on the data, we discovered over 620K taken-down domains and conducted a longitudinal analysis on the take-down process, thus facilitating a better understanding of the operation and its weaknesses. We found that more than 14% of domains taken-down over the past ten months have been released back to the domain market and that some of the released domains have been repurchased by the malicious actor again before being captured and seized, either by the same or different sinkholes. In addition, we showed that the misconfiguration of DNS records corresponding to the sinkholed domains allowed us to hijack a domain that was seized by the FBI. Further, we found that expired sinkholes have caused the transfer of around 30K taken-down domains whose traffic is now under the control of new owners.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 34 ) ) ) [post__not_in] => Array ( [0] => 4697 ) )

How Bad Can It Git? Characterizing Secret Leakage in...

Michael Meli (North Carolina State University), Matthew R. McNiece (Cisco Systems and North Carolina State University), Bradley Reaves (North Carolina State University)

Read More

Graph-based Security and Privacy Analytics via Collective Classification with...

Binghui Wang (Iowa State University), Jinyuan Jia (Iowa State University), Neil Zhenqiang Gong (Iowa State University)

Read More

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks

Michael Rodler (University of Duisburg-Essen), Wenting Li (NEC Laboratories, Germany), Ghassan O. Karame (NEC Laboratories, Germany), Lucas Davi (University of Duisburg-Essen)

Read More

Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based

David Derler (DFINITY), Kai Samelin (TÜV Rheinland i-sec GmbH), Daniel Slamanig (AIT Austrian Institute of Technology), Christoph Striecks (AIT Austrian Institute of Technology)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)