Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Take-down operations aim to disrupt cybercrime involving malicious domains. In the past decade, many successful take-down operations have been reported, including those against the Conficker worm, and most recently, against VPNFilter. Although it plays an important role in fighting cybercrime, the domain take-down procedure is still surprisingly opaque. There seems to be no in-depth understanding about how the take-down operation works and whether there is due diligence to ensure its security and reliability.

In this paper, we report the first systematic study on domain takedown. Our study was made possible via a large collection of data, including various sinkhole feeds and blacklists, passive DNS data spanning six years, and historical Whois information. Over these datasets, we built a unique methodology that extensively used various reverse lookups and other data analysis techniques to address the challenges in identifying taken-down domains, sinkhole operators, and take-down durations. Applying the methodology on the data, we discovered over 620K taken-down domains and conducted a longitudinal analysis on the take-down process, thus facilitating a better understanding of the operation and its weaknesses. We found that more than 14% of domains taken-down over the past ten months have been released back to the domain market and that some of the released domains have been repurchased by the malicious actor again before being captured and seized, either by the same or different sinkholes. In addition, we showed that the misconfiguration of DNS records corresponding to the sinkholed domains allowed us to hijack a domain that was seized by the FBI. Further, we found that expired sinkholes have caused the transfer of around 30K taken-down domains whose traffic is now under the control of new owners.

View More Papers

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

JavaScript Template Attacks: Automatically Inferring Host Information for Targeted...

Michael Schwarz (Graz University of Technology), Florian Lackner (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Digital Healthcare-Associated Infection: A Case Study on the Security...

Luis Vargas (University of Florida), Logan Blue (University of Florida), Vanessa Frost (University of Florida), Christopher Patton (University of Florida), Nolen Scaife (University of Florida), Kevin R.B. Butler (University of Florida), Patrick Traynor (University of Florida)

Read More

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More